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The optimization problem of minimizing a linear objective function over a general 
convex body given only by a weak membership oracle is a central problem in 
convex optimization. Traditional methods require the (expensive) construction 
of separating relations (cuts) or gradient information (which is often expensive). 
We demonstrate how a sampling procedure can be used as the central routine in 
a randomized polynomial time algorithm for approximately minimizing a linear 
objective function over an up-monotone convex set presented by a membership 
oracle. The sampling procedure is a Markov chain that uses only local membership 
tests. We further demonstrate a direct application of this technique to an important 
stochastic optimization problem called "component commonality." 
A second application of the above sampling scheme is a statistical hypothesis 
testing procedure involving contingency tables. The test involves counting con- 
tingency tables (matrices of non-negative integers) obeying given row and column 
constraints which is known to be jji3 hard. Under fairly natural assumptions the 
Markov technique yields an effective procedure for approximating, to any de- 
sired accuracy, the necessary counts. We also develop a powerful exact counting 
scheme, for fixed dimension, and use it to validate the random technique. 
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Chapter 1 

Introduction 

This thesis applies samplers based on rapidly mixing Markov chains to both convex 
optimization and counting contingency tables. A sampler, S, is a randomized 
algorithm (or random variable) that, given a description of a feasible set and 
probability measure ß on the feasible set, generates a feasible element such that 
for any non-negligible //-measurable set V, Pr[S € V] ~ ß(V). This thesis is 
primarily concerned with samplers that generate points from convex bodies in Rn 

which are presented by membership oracles.1 [23,21, 5, 40] 
The first part of this thesis is joint work with Ravi Kannan and Sridhar Tayur 

and is a randomized polynomial time algorithm to approximately minimize a linear 
function c over an up-monotone convex set, K, (i.e., a convex set with the property 
that if x belongs to the set and y is component wise greater than or equal to x, 
then y belongs to the set also) in the positive orthant given by a membership 
oracle.[39] By "membership oracle" we mean a black box procedure that can 
tell us if a; £ K. It does not supply any additional structural information. It is 
also assumed that an initial point x* € K is known. This model is motivated 
by a stochastic optimization problem called component commonality [37] where 
membership can be tested by performing a numerical integration, but separating 
hyperplanes or even gradient directions are expensive to obtain. 

Our approach is to optimize using only local information. We present a 
non-uniform sampler for Rn that obeys a probability distribution that grows ge- 
ometrically in the direction of the objective function and falls off geometrically 
in distance away from the convex body. The central technique is to design the 

'Actually the intersection of a very fine lattice in R™ with a convex body. 



distribution to be smooth enough that the sampler can converge in polynomial 
time. 

The second application of this thesis is joint work with Martin Dyer and Ravi 
Kannan and is a near-uniform sampler and an approximate counting scheme for 
two way contingency tables that simultaneously obey row and column constraints. 
A two way contingency table is a matrix of non-negative integers. These tables are 
often used to represent how many individuals have pairs of attributes (i.e. rows are 
indexed by one attribute, columns by the other) in a population. [2] Diaconis and 
Efron [16] have proposed a significance test and a model fit that can be performed 
with the aid of a near-uniform sampler for tables that obey given row and column 
constraints. 

We show how, given certain assumptions, simple geometry can be used to 
convert a near-uniform convex body sampler to a near-uniform contingency table 
sampler. That is: given certain easily met conditions on the row and column 
totals our continuous techniques can solve this discrete problem. An approximate 
counting scheme is designed using this sampler. 

We also develop, with Bernd Sturmfels, an effective exact counting scheme 
for fixed dimension contingency tables. This scheme helped validate the random 
results and allowed us to analyze the asymptotic accuracy of some estimation 
schemes in the literature. 

1.1    Convex optimization. 

In principle any convex optimization problem can by solved in polynomial time 
by the Ellipsoid Algorithm. One can also see Vaidya[53] for a state of the art 
general convex programming algorithm. However, these approaches all require 
a separation oracle. A technique described by Yudin and Nemirovskii can be 
used to convert a membership oracle to a separation oracle [33], but this is quite 
expensive. Previous efforts to solve component commonality have used non-linear 
programming methods, but these require that gradients be calculated, which can 
be as expensive as computing separating cuts. 

We solve the following more general problem: optimize a linear function over 
an up-monotone set presented by a membership oracle. A set K C Rn is called 
up-monotone if a; € K and y > x —>• y G K. This property holds for linear 
programs of the form Ax > b when the matrix A is non-negative. Many supply 
and covering problems have this form.  We do not require that K be bounded 



but require, with out loss of generality, that our objective function, c, be strictly 
positive and K be contained in the non-negative orthant of R". Thus for any d we 
have the set K f| {x 6 Rn | c • x < d} is bounded. 

The component commonality problem is a stochastic or chance constraint 
optimization problem. Good sources for this problem are [54] and [37]. The 
informal description is as follows. Every month a factory receives orders for its 
m products. The total orders for a month are considered a vector in Rm (we will 
not deal with the integral nature of this problem at this time) distributed according 
to some log-concave density.2 We assume that we can evaluate F(d) at any point 
d € Rm. This is enough to allow us to numericly integrate F over various regions. 
We also have an x m non-negative matrix A in which we interpret Aaj, as the 
amount of component a used in the production of one unit of product b. Our goal is 
to find a vector JGR" that is a stocking level of components so we have Ad < x 
with probability at least a when d is drawn from the order distribution. That is if 
we stocked our warehouse according to the plan x we would be able to fill all our 
orders with probability at least a. It should be clean that component commonality 
is a special case of up-monotone optimization. 

1.2    Contingency tables. 

Diaconis and Efron [16] have developed a method of modeling distributions that 
allows one to make some qualitative and quantitative statements about an unknown 
distribution. This technique is potentially much more useful than the usual task of 
proving the unknown distribution is not various test distributions. Their scheme 
requires several significance tests which come down to counting contingency 
tables. Unfortunately the counting problem is difficult ($P hard) even for 2 x n 
tables. 

An example (adapted from [17]) is in order (this is example should not be 
construed as being the only application). 

The table 1.1 is from Snee [49]. A uniform generator of contingency tables 
could be used to implement many different statistical tests, we give an example 
here chosen for simplicity (rather than power or generality).  Suppose a census 

2A density, F, is log-concave if log(F) is concave. A density, G, is concave if G(Xx + (1 — 
X)y) > XG(x) + (1 - X)G(y) for all x, y and 0 < A < 1. So F is log-concave if and only if 
F(Xx + (1 — X)y) > F(x)xF(yY~x with x, y, X as above. Any positive concave function is 
log-concave. 



Eye Color Hair Color Total 

Brown 
Black Brunette   Red Blond 

220 68 119        26 7 
Blue 20 84         17 94 215 
Hazel 15 54         14 10 93 
Green 5 29         14 16 64 

592 Total 108 286        71 127 

Table 1.1: Eye v.s. Hair Color, observed. 

Eye Color Hair Color Total 

Brown 
Black Brunette   Red Blond 

220 40 106        27 47 
Blue 39 104        26 46 215 
Hazel 17 45          11 20 93 
Green 12 31          7 14 64 

592 Total 108 286        71 127 

Table 1.2: Eye v.s. Hair Color, nearly independent. 

were performed where 50 different statistics (hair color, eye color, income level, 
...) each divided into discrete categories (Black, Brunette, Red, Blond; Brown, 
Blue, Hazel, Green; 0 to 6999 krona, 7000 to 13999 krona ...) were collected 
on 592 people. A plausible task for a statistician would be to identify pairs of 
traits that support some meaningful relationship. This could be the first step in an 
epidemiological study. One technique would be to examine the r2°) = 1225 two 
way tables. Table 1.1 could be one such pairing. The statistician does not wish to 
look at 1225 two way tables- so an automatic technique of identifying interesting 
ones is required. 

Let Ibembyna table and let r; = J2]=i ^j and cj = YALX ^i,j- X would 
be considered uninteresting if the variables were independent, or equivalently 
Xij « riCj1592. A nearly independent table would look like table 1.2. 

Comparing these two tables one might conclude that people with brown eyes 



and blond hair occur less often in the observed table than in the nearly independent 
table. The question is not if we have discovered a relationship between hair and eye 
colors in the table at hand, but if the relationship observed in this table is a likely 
due to sampling error. One could compute the x2 statistic of the observed table 
(which is a measure of departure from independence) and get a value of 138.29. 
The question then becomes is 138.29 a typical or atypical amount of deviation 
from independence? One method put forward by Diaconis and Efron to determine 
this is to compute the significance level of the observed table with respect to the 
uniform distribution. This is defined as the ratio of the number of integer matrices 
matching our row and column totals that have a x2 statistic of at least 138.29 to the 
total number of integer matrices matching our row and column totals. That would 
be to say "of all the possible tables with the same disjoint distributions (ie. with 
the same rt- and Cj) of hair and eye colors what proportion have x2 < 138.29". 

For the table in question asymptotic and volume techniques gave "about 
10%"[16] and later randomized techniques gave 16.3% (with no confidence 
interval) [20]. My current randomized simulation work shows that the true value 
is between 15.3 and 15.7 with a confidence level of over 99.7%.3 In any case, 
the result is that about 1/6 of all possible tables with the same row and column 
sums look more independent than the observed one. So the relationship between 
eye color and hair color observed in the table is not very strong and would not be 
a good candidate for further investigation.4 The two way tables could be ranked 
according to how atypical they are (the significance of their x2) and the human 
statistician could then be presented the top few dozen such tables.5 

With a counting technique (and some Bayesian priors) much more sophisticated 
analysis can be performed. 

3 This should illustrate the difficulty encountered analyzing tables as small as 4 x 4. 
4It is important to note that we are not saying that the relationship doesn't exist or is statistically 

insignificant. It is also important to remember that when the number of variables is commensurate 
with the sample population that one would expect many statistically significant but meaningless 
cross correlations. 

5 They could then discover a relationship like "unusually few people who juggle knives drink 
every day" indicating either few people partake in both or the combination is fatal. 



1.3    Basic Markov chains. 

Here we will define the Markov chain terminology we are using in this thesis. 
We will consider a Markov chain to be a finite directed graph G = (V,E) and a 
transition function P : V x V —> R such that 

P(x,y)>0 Vx,y6V 
P(x,y)>0 V(x,y)£E 
P(x,y) = 0 V(x,y)$E ' 
EyevP(x,y) = l VxeV 

Note that this definition requires (x, x) E E if J2y&v y^.x P(x,y) < 1. We interpret 
P(x,y) as the probability that the Markov chain will be in state y at time t + 1 
given that it is in state x at time t (or P[Xt+\ = y \Xt = x]). We will also consider 
our Markov chain as a linear system where Xt will be a vector in Ry and by an 
abuse of notation we take P to be the | V| x \V\ matrix such that PXiV = P(x,y). 
The idea is that if Xt is a vector such that Xt > 0 and 1 • Xt = 1 we can interpret 
(Xt)v as P[Xt — v], the probability that our Markov chain is in state v at time t. 
The Markov chain then progresses under the simple relation 

Xt+i = XtP. 

As one would expect we are immediately concerned about the eigenvalues and 
eigenvectors of these systems. 

We will not treat Markov chains in their full generality, but discuss only the 
"nice" chains used in this thesis. For a much more general treatment one should 
refer to [ 12]. "Nice" involves some technical definitions from the theory of Markov 
chains, but we will define all the terms used in this section. The chains we will 
use will be chosen to be irreducible, aperiodic and time-reversible. Each of these 
terms has an interpretation in terms of stochastic processes, graph theory and linear 
operators. To motivate the definitions we will point out all three interpretations 
where appropriate. 

A finite Markov chain is called irreducible if P[Xt = y infinitely often] = 
for all all y G V. This means that the chain has no transient states (states that 
can not be reached from other sets of states). If fact it is exactly equivalent to the 
underlying graph G being strongly connected (for every a,b € V there exists a 
directed path of edges in E from a to b). This condition is stronger than saying 
that the matrix P is an irreducible matrix but is equivalent to plvl > 0. 

10 



An irreducible Markov chain is stationary or aperiodic if Vrc,y G 
V linii^oo P[Xt = y\Xo = x] exists. This means that for any k Xt and 
Xt+k are distributed identically as t —v oo. It is easy to see that for an irreducible 
aperiodic Markov chain the above limits must independent of a; and it makes sense 
to write lim^oo P[Xt = y]. An irreducible Markov chain is aperiodic if and only 
if the least common divisor of the lengths of all cycles in G (counting self loops as 
cycles of length 1) is equal to 1. The linear operator interpretation of aperiodic is 
that all eigenvalues of the operator are real (and > —1). If the chain is irreducible 
and aperiodic then the eigenvalue 1 occurs with multiplicity exactly one and the 
unique eigenvector 7r such that 1 • IT = 1 corresponding to this eigenvalue is called 
the stationary distribution. We then have Vy G V ny = lim^oo P[Xt = y] and 
iTy > 0 for all y eV. 

An irreducible aperiodic Markov chain is time reversible if V(a;,y) G 
E ir(x)P(x,y) = ir(y)P(y,x). Time reversibility has a number of interpre- 
tations. The most obvious is that for every edge (re, y) G E we have (y, re) G E 
and lim^oo P[Xt = x A Xt+\ = y] = lim^^ P[Xt = y A Xt+i = x], or each 
edge direction is equally likely in the limit. In terms of linear operators if a Markov 
chain is irreducible, aperiodic and time reversible then the matrix DPD~l is sym- 
metric where D is the | V| x \V\ diagonal matrix such that DXtX = Jir(x). Thus 
P is in fact similar to a diagonal matrix.6 

From now on we will assume our Markov chain is irreducible, aperiodic and 
time reversible. We have for such chains if q is any vector that obeys the time 
reversal equation Vr^yGV P(x,y)qx = P(y,x)qy then q = \TT for some scalar 
A. This property is very useful in designing Markov chains with specific stationary 
distributions. 

If G is a strongly connected symmetric graph ((re, y) G E -H- (y, re) G E) there 
is a very powerful general method of designing a Markov chain by choosing the 
transition probabilities according to the "Metropolis filter." Suppose we have a 
positive function F and we wish that the stationary distribution 7r of our Markov 

6 It is interesting to notice that time reversibility taken alone does not have such a simple 
interpretation as the 3 state Markov chain with transition matrix 

i i 0 
0 - - 
" 2 2 
0 0 1 

is not similar to any symmetric or diagonal matrix. 

11 



chain has nx = F(x)/(J2yev F(y)) Vx € V. For x G V let N(x) be the set of all 
V £ V, y ^ x, (x,y) € E. Let Y be max^y |iV(a;)|, the largest degree of any 
vertex in G and define 

P(x,y) = 
^min(l,fM) yeN(x) 

i-E2ejv(*)^0*,*)  * = y        • O-1) 
0 otherwise 

The Markov chain with transition matrix P is irreducible, aperiodic and time- 
reversible. The irreduciblity come directly from G. Aperiodicity because 
P(x,x) > Oforalla;. The chain is time-revisable because if x ^ y and P(x,y) ^ 0 
then it time-reverses with F: 

P(x,y)F(x) = ±wm(l,Z$)F(x) = 
±mm(F(x),F(y)) = 

±mm(l,l$)F(y) = P(y,x)F(y). 

Furthermore this is enough to show that the unique stationary distribution n is such 
that irx = F(x)/(J2y£V F(y)) Vz e V. It is very important that F enters into the 
transition probability equation as a ratio- so one never actually has to pre-compute 
the normalizing factor J2yzv F(y) as this factor is often the count or volume that 
one needs the Markov chain to estimate. 

We want our Markov chain to be rapidly mixing.[3] To explain this property 
we pick a measure of similarity between distributions on V. Let PA and ps be 
two probability distributions on V. The distance from PA to PB can be defined a 
number of ways: 

y/Eyev \PA(y) - Pß{y)\k   h distance 
maxyGv \PA (y) - PB (y) |     loo distance 

Eyev iPAitLf))2 chi-sqdista -vev       pA{x) chi-sq distance with respect to PA- 

We use l\ or variational distance because it is the distance used in many of the 
papers in the literature and has a slightly simpler interpretation. Let (1(PA,PB) 

denote one of the above distance measures. Let pt be the distribution at time time 
((pt)y = P[Xt = y]) it is well known that for any Markov chain as above that there 
is a constant x < 1 such that d(ir, pt) < x*!^, Po) where / is some function of ir 
and po. For the chi-sq distance we can take f(ir, p0) = J2yev      w^)       (which is 

12 



again the chi-sq distance, simplifying subsequent analysis).[27] A Markov chain 
is rapidly mixing if 1/(1 — x)1S smaller than some polynomial in parameters we 
care about. 

We will be looking at chains whose states are lattices in Rn intersected with 
bodies of diameter d whose transitions correspond "King's moves." In this case 
rapidly mixing will mean that 1/(1 —x) is bounded above by a polynomial in n and 
d. It would be nice if rapidly mixing had a simple definition such as "polynomial 
in log(|V|)" but it is easy to show that Markov chain on the points in x € Z>0 

with Xi < d has dn states and has 1/(1 - x) € 0(nS) which is not polynomial 
in log(| V |) = n log d. We wish to consider this chain rapidly mixing, so we are 
forced to abandon any such simple definition of rapidly mixing. It is important 
to notice that the graph-diameter of such a Markov chain is 0(nd) thus our chain 
is rapidly mixing in the sense it mixes in time polynomial in the diameter of the 
chain (instead of the much weaker property of mixing in time polynomial in the 
number of states). 

1.4    Some geometric Markov chains. 

Here we quickly outline some of the typical Markov chains used to generate points 
from convex regions. All the Markov chains in this section are designed by picking 
a finite set of points from inside a convex region as the set of states. The underlying 
graph G = (V, E) of the Markov chain is then chosen as above and such that for 
each state it is easy to generate a neighbor with probability P(x,y). 

1.4.1    King's moves 

The idea of "King's moves" (used in both the optimization problem and for 
contingency tables) is to have the set of states of the Markov chain be some affine 
translate of the standard integer lattice. The edges in this Markov chain are the 
states that differ by one unit in exactly one coordinate. These are not the moves 
that the King makes in chess (which would allow a unit difference in any number 
of coordinates) but for lack of a better name have been called "King's moves". In 
this scheme each state in the Markov chain is identified with the cube consisting of 
points closest to the state. States roughly correspond to volume elements and edges 
correspond to facets of cubes (or area elements). This correspondence of states 

13 



and transitions to simple geometric objects is of central importance in analyzing 
the behavior of these Markov chains. 

1.4.2 Ball moves 

Ball moves, and the related "Normal moves", also have a strong geometric inter- 
pretation. In ball moves each point in Rn is a state in the Markov chain (actually 
one is forced to discretize space on a very fine grid, but for all intents and purposes 
one deals with a Markov chain on Rn) and transitions are vectors drawn uniformly 
from a ball (or in the normal case vectors drawn from Rn using the normal density 
function). A transition corresponds to adding a vector to the current state to get a 
new state. This is very much like a discrete time Brownian process. In this treat- 
ment one rarely discusses individual states but instead reasons about, measurable, 
collections of states. The probability of moving from a given state into a set of 
states is then the proportion of the measure of the step set (ball or normal) that is 
inside the destination set. 

1.4.3 Gibbs sampler 

The Gibbs sampler is a classic method used in statistics. What one does is either 
run through coordinate directions in a cyclic order or pick them at random. When 
one has coordinate direction one then generates a point on the line passing through 
the current point in the given coordinate direction. The idea behind this method is 
to mix perfectly with respect to one variable at a time. The hope is that in relatively 
few runs through the variables that the process will mix. Gibbs has the advantage 
that the moves, which seem quite powerful, are often quite easy to implement. 
This method has not been well characterized as a Markov chain. Most proofs of 
mixing time prove only that Gibbs is not much worse than King's moves. These 
moves were also called "Rooks moves" in Applegate's thesis. 

1.4.4 Hit and run 

Hit and run is the name of an important class of stochastic techniques. [5 5,56,48,9] 
Hit and run is used in non-linear programing and it is of interest to this thesis that 
it was recently shown to be rapidly mixing by Martin Dyer and Leen Stougie.[25] 
Then method is natural but has the weakness that no one has identified a simple 
geometric quantity that predicts the mixing rate like isoperimetry does for King's 
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or ball moves. In Hit and Run one picks a direction r uniformly from the surface 
of the unit ball and then in one step generates a point distributed according to F 
(the density function we are trying to achieve) restricted to the ray emanating in 
the direction of the ray. It is interesting to note that this chain is time reversible 
without any application of the Metropolis filter, just by the fact that a ray r and — r 
are generated with equal probability. 

1.5    Counting/computing volume. 

If one can count lattice points one can compute volumes and the converse is often 
true. The following is taken from Gruber and Lekkerkerker [34]. 

A lattice polytope is a polytope with all integral vertices. For a lattice polytope 
P and natural number k we have 

n 

;=o 

where the Li are rational numbers depending only on P and n. Let / be any 
function from the set of all lattice polytopes. We say that / is unimodular invariant 
if for any lattice polytope P and unimodular integral transformation U and integral 
vector u: 

f(UP + u) = f(P). 

We say that / is additive if for all lattice polytopes Pi, P2 such that Pi U P2 is 
again a lattice polytope then 

/(Pi u p2) + /(p n P2) = /(Pi) + /(P2). 

A theorem of Betke's shows if / is unimodular invariant and additive (volume is 
such a function) then /(P) = Yl=o \Li{P) for all P where L,- are as above and 
\i are scalars depending only on / (independent of P). Thus the ability to count 
lattice points is in some sense universal for a large class of invariants of integral 
polytopes. 

The volume of a convex body differs from the number of lattice points in the 
convex body by an amount proportional to the number of lattice points whose 
Vornoi cells are not completely covered by the body or its compliment. Often, as 
is the case with contingency tables, the body contains a reasonable sized copy of a 
n-cube and therefore the volume is a good approximation of the number of lattice 

15 



points in the body. This allows one to generate a lattice point from a distribution 
arbitrarily close to uniform (by a rejection sampling technique) and then generate 
estimates for the number of lattice points with any desired level of accuracy. 

16 



Chapter 2 

Up Monotone Optimization 

2.1    Membership model. 

We are interested in minimizing a linear function, c, over a convex body K C Rn 

presented by a membership oracle. This is the most general form of a linear 
convex optimization problem. Under the "oracle" model [33] the convex body K 
is presented as a tape containing (n,x,r,R) where n is dimension of space we are 
working in, x G Qn is a rational point in K, r > 0 is such that Br(x) C K and R 
is such that K C BR(X), where 5r(a;) denotes the ball of radius r centered at x. 
It is also assumed that one can determine if y £ K for any y € Rn. In this model 
the only optimization algorithms known to run in polynomial time are relatives of 
the classic ellipsoid method. 

A large problem with these method for convex optimization are that separating 
inequalities are required to run the algorithm. Given a point x 6 Rn, x ^ K a 
separating inequality for K and x is a vector a and number 6 such that a ■ x > b 
and Vy G K a • y < b. The fact that any two closed disjoint convex sets can be 
separated by such a linear relation is one of the central properties of convexity. 
Separating relations can be derived from a membership oracle [33, 43] but the 
reduction is complicated and expensive. 

2.2    Algorithm outline and time bounds. 

Using the membership oracle, we approximately minimize a linear function over 
an up-monotone convex feasible set in the positive orthant as follows. We may 
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assume a suitable upper bound on the variables so we can enclose this feasible 
region in a rectangle (in n dimensions). At the heart of our approach is a positive 
real-valued logarithmically concave function F on the rectangle with the following 
properties: (1) the integral of F over a region consisting of near-optimal solutions 
is at least a constant fraction of the integral of F over the whole feasible set, and (2) 
the integral of F over the feasible set is at least a constant fraction of the integral 
of F over the entire rectangle. Thus, if we pick a "random sample" from the 
rectangle with probability density proportional to F (we refer to this throughout as 
"sampling according to F"), we would get a near-optimal solution with constant 
probability; this probability can be boosted by repeated sampling. Our algorithm, 
then, is simply a choice of F (determined by two parameters a, a damping factor 
favoring feasible points, and ß, a bias favoring points with better objective values) 
and a method to obtain a sample according to F. We show that a certain biased 
random walk (on the uniform grid of size 8, to be determined later), starting from 
a feasible solution (x*), is indeed able to pick a random sample from the feasible 
set with probability (approximately) proportional to F. While it is relatively easy 
to argue that in the steady state, this random walk picks a sample with density 
proportional to F, it is nontrivial to show that this steady state is approached in 
a polynomial number of steps. To accomplish this central result, we draw on 
recently developed results in the theory of rapidly mixing Markov Chains as well 
as on random walks in convex sets [23], [5]. The latter paper gives a technique for 
sampling from log-concave distributions which we use here, although, we have 
tried to make this description self-contained by giving as many details as possible. 
Our random walk can be executed with only local knowledge of F as well as a 
membership (not a separation) oracle for the feasible set. 

Given an instance of the problem (a membership oracle for K and objective 
function c > 0), e > 0 (relative error), K > 0 (failure probability) and an initial 
feasible point x*, the algorithm succeeds with probability at least 1 — K in finding 
a qalg G Rn which is feasible and such that c • qa'9 < (1 + c)(c • qopt). Rather than 
come within e of the optimal in one long random walk, we develop an adaptive 
algorithm which improves the feasible solution in stages (by iteratively refining 
the gap between a known feasible solution and a probabilistic point-wise lower 
bound lower bound L on optimal cost). This "staging" of the algorithm decreases 
the run-time's dependence on e. 

Each stage begins with a feasible solution x* and a probabilistic "lower bound" 
L where if there is a feasible x with c ■ x < L, then the algorithm has failed. (We 
will of course ensure that the probability of failure is low.) We refer to c • x* — L 
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as the "gap" (at the beginning of the stage). At the end of the stage, we have a 
new lower bound and a new feasible solution; we ensure that the gap at the end of 
a stage is at most 1/2 of the gap at the beginning. We stop when the gap is at most 
e times the value of the cost lower bound. The algorithm is described in detail in 
figure 2.4 and justified in section 2.7, but we give here a short verbal description. 

Each stage proceeds as follows: the feasible set is enclosed in a rectangular 
solid. We devise a log-concave function F on the rectangle with the two properties 
described above. [The function F has two components: a "penalty" (called the 
gauge function in what follows) for going out of the feasible set which increases 
as we become "more infeasible" and a bias (drift) which favors low objective 
function value. In some vague sense, this is similar to Lagrangian relaxation with 
both feasibility and optimality represented by one function.] 

We then discretize by dividing the rectangle into small cubes. We perform 
a random walk on the cubes with transition probabilities depending on F. It 
will be easy to see that the steady state probabilities of this random walk will be 
proportional to F. We will also show fast convergence to the steady state, so that 
after a polynomial number of steps, we are "close" to the steady state probabilities. 

After doing the random walk for this number of steps, one of the following two 
scenarios occurs: 

(i) We have found a feasible solution whose value cuts down the gap by a factor 
of at least 1/2. In this case, we replace our old feasible solution by this and go to 
the next stage. 

(ii) Otherwise, we have (probabilistic) proof of a greater lower bound and we 
go to the next stage with this new lower bound (again cutting the gap down by a 
factor of 1/2). 

Although F has been devised accurately to have the desired properties, several 
errors are introduced in the sampling procedure. There are errors due to discretizing 
into small cubes, due to the inexact computation of the gauge function and due to 
the fact that the lower bounds are only probabilistic. The management of these 
errors is the main focus of section 2.5. 

Our main result is two bounds on the running time of the algorithm. [The 
running time is bounded above by the minimum of the two.] 

If v is the ratio of the value of the given initial feasible solution to the optimal 
value, e is the required relative error, 1 — K the required success probability and n, 
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the dimension of the up-monotone convex feasible set K, the first bound is 

0 
„7(log(?))W^)log(?) \ 

V / 

If in addition, we are given xl > 0 such that \/y 6 K, we have xl < y and an 
xu such that there is an optimal solution z with z < xu (so we can replace K by 
K n {x : x < xu}), then we also have a bound 

The rest of the chapter is organized as follows. Section 2.3 notes that the 
CC problem falls into the framework of up-monotone convex sets and has some 
general remarks. Section 2.4 constructs the appropriate log concave and gauge 
functions that are to be used in each stage of the algorithm. Section 2.5 describes 
the random walk to be performed at any stage of the adaptive algorithm, and 
contains the analysis of the errors introduced due to discretization, gauge function 
approximation and walking for finite number of steps. In section 2.6, we find a 
bound on the spectral gap of the Markov chain, which allows us to use results on 
rapid mixing to provide a bound on the number of steps required in any stage. 
In section 2.7, we prove the adaptive algorithm's correctness and run time, and 
present two variants and prove their run times. Proofs for certain lemmas have 
been deferred until the end of the chapter. 

2.3    The component commonality problem. 

The problem was described in detail in the Introduction. If U denotes the matrix of 
the uij 's there, let y = y(d) = Ud. Under the assumption that h(-) is log-concave, 
it is easy to see that y has a log-concave density. Let D denote the density of 
the y. Let ßo denote the corresponding measure. (So for any measurable set S, 
HD{S) = Js D.) Then the feasible set K of stock-levels can be expressed as 

K = {xe~Rn : fiD(dom(x)) > 7} 

where dom(a;) is {y : y < x}. It is easy to show that K is convex ([54]). It is also 
clearly up-monotone. 
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Figure 2.1: The basic geometry. 
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2.3.1    Why component commonality is convex. 

It is clear that component commonality, as described in the introduction, is an 
up-monotone problem contained in the positive orthant. It is also easy in practice 
to find an initial feasible stocking. So if the feasible set is convex then it fits into 
our monotone optimization scheme. Let K is the feasible region of a component 
commonality problem its convexity follows from a theorem of Prekopa [54] but 
it is worthwhile to see how this is proven directly from the Brunn-Minkowski 
theorem.[10] The Brunn-Minkowski theorem is: if Vol is the standard volume 
function and A, B are two compact convex sets in Rn then the function 

/ : [0,1] -> R :   /(A) - Vol(AA + (1 - \)B)l'n 

is concave. [10] If our density F was the indicator function of a convex set B 
(1 if x G B, 0 otherwise) then the component commonality problem would be 
convex because then the probability that a stocking x is sufficient would be ex- 
actly Vol({<i G Rm+ | Ad < x })/Vbl(i?) and we would have for any two feasible 
stockings x, y and A G [0,1] 

Vo\({d G Rm+ \Ad<Xx + (\- \)y})l/m 

> Vol(A{deRm+ \Ad<x} + {l-\){deRm+ \Ad<y})1/m 

> XWol({d G Rm+ | Ad < x}Y'm + (1 - A) Vol({d G Rm+ | Ad < y})^m 

> min (Vol({d G Rm+ | Ad < x})^m,Yol({d e Rm+ | Ad < y})l/m) . 

Thus \x + (1 — \)y is feasible and the feasible region must be convex 
(since x,y were arbitrary). The first inequality is because the Minkowski 
sum of {d e Rro+ | Ad < x} and {de Rm+ \Ad<y} is contained in the 
set {x G Rm+ | Ad < Ax + (1 — A)y}. The second inequality is the Brunn- 
Minkowski theorem and the third is an obvious fact about concave functions. 

To extend the argument to more general F we define: 

Aa(x) = {d€ Rm+ \Ad<x,   F(d) > a} , 

the set of points with density > a that do not exceed the stocking vector x. Again 
by simple properties of the Minkowski sum we have for A G [0,1] 

Aa (Ax + (1 - X)y) D AAa(x) + (1 - A)Aa(y). 
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And, by Brunn-Minkowski, 

'1 

so 

1      > (AAa(z) + (l-A)Aa(l/))     / 

x(f i)m+o-A)(7 i)m 
\JAa(x)     ) \JAa(y)     J 

I l>min(/      1, /      1) 
JAa(\x+(l-\)y) \JAa(x)      JAa(y)    J 

Using that for any z 

p />oo     /> 
/ F(d)= /      /       Ida 

we can integrate over levels of the density F and get 

/ G > min ( /     G, [     G) 
JAo(x+(l-X)y) \JAo(x)       JA

O(V)     J 

thus if x, y G K then (Ax + (1 — X)y) G K and K is convex. 

2.3.2    Hardness of discrete version of component commonality 

For m points yl,y2,...ym in R" and x also in Rn let dom(a?) be the set 
{i | i G 1 • • • m, x > y1}. 

Theorem 1 Given m points yl,y2,... ym in Rn, a fraction 7, a positive vector c 
and a real number (, deciding if there exist an x G R" such that x>y% is satisfied 
for at least 7m different i 's and c- x < ( is NP complete. 

Proof sketch: Let G = (V, E) be an undirected graph with vertices V = 
{1,2 • • • n} and edges E. Given an integer k, the clique problem is: "does G have 
a complete induced subgraph on some k vertices?" For each e G E let ye G Rn 

be the vector such that 

1   vertex i is an endpoint of edge e 
1 0   otherwise 
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Let c = 1,7 = (Jfe - \)kl(2\E\) and ( = k. 

Let a; be a solution to the above problem. WLOG assume a; is a 0- 
1 vector and define Gx = (VX,EX) to be the induced subgraph of G where 
Vx = {i € V | rcj > 1}. We then have \GX\ = c ■ x and \EX\ = | dom(a;)|. So we 
see that x such that c- x < k and | dom(a;) | > fc(fc — 1 )/2 correspond precisely to 
induced subgraphs of G with < k vertices and > k(k — l)/2 edges: k-cliques. □ 

This result compliments the recent result of Martin Dyer and Leen Stougie[25] 
which shows that two stage stochastic programming with simple recourse is jJP 
complete. 

2.3.3    General remarks 

While we do assume that a membership oracle is available for K, we do not assume 
that a separation oracle is available. By a theorem of Yudin and Nemirovskiii it is 
known that membership and separation are polynomial time equivalent for convex 
programming problems like this one [33]. But the conversion has a large exponent, 
and the approach here is more efficient. 

Instead of computing the integral each time the membership oracle is called, 
we could instead pick m samples yl,y2,.. .ym according to D at the outset and 
then for each query x to the membership oracle for K, say yes to the query if 
and only if for at least 7m of the y\ we have x > y\ It is easy to show by 
standard techniques that for m large enough, this suffices as a an approximate 
test of membership in K. We do not go into the details here. Also, in the actual 
situation, either the yl may be available from past data or if one hypothesizes a 
particular log-concave density D, we may draw samples according to the density 
using the techniques of [5]. 

One may be tempted to solve the discrete problem: given m points yy,y2,...ym 

in Rn, a fraction 7, a positive vector c and a real number (, does there exist an 
x € Rn such that x > yl is satisfied for at least 7m different i 's and we also 
have c • x < ( ? In this generality, we show (in the appendix) that the problem is 
NP-hard. So one needs to exploit the special nature of K, namely its convexity. 

For an NLP approach to the CC problem, see [37] and references provided 
there. 
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2.4    The function F: bias and damping. 

Let K be an up-monotone convex set contained in the positive orthant of 
Rn, x* a known feasible point and c > 0 the cost vector in the linear 
objective function. For real numbers L > 0, T > 0, we define a log- 
concave distribution B^^) on R" such that if L < inf{c- y \y e K} then 
VB(LtT) ({yeK | c • y < inf {c • y \ y e K} + T})/nB{LiT) (R

n) > \ and show 
how to use the membership oracle for K to approximately sample from this dis- 
tribution in an efficient manner. 

Let xl be such that Vy € K, xl < y and let xu be such that Vy G K, 3z e K 
such that c • z < c • y and z < xu. Note that by the up-monotone property, 
xu e K. If xl and xu are not explicitly given we can take xl = 0 and xu such 
that xu

{ = (1/c-) EILi CM- Let KL = K n {y \ c ■ y > L} (we will later further 
restrict our attention to a "rectangle" that is roughly lx   xl <x <xu |). 

Definition 1 For any real L > 0, T > 0 let "the tip " be the set x 6 KL such that 
c-x <inf{c-y | y € KL} + T. 

Let ij;<KLiXu)(x) denote the infimum of all real positive numbers A such that 
xu + ^Y~ € KL- This is the dilation of KL about xu needed to contain x and is 
called the gauge function associated with KL- When the context is clear we will 
suppress the subscripts and use tp instead oftp^KL,xu)- 

F will be of the form 

F(x) = e-
amax(^(.KL,*u)(x)-'[<0)e-Pc-x (2.1) 

where ß and a. are positive reals to be determined later. We take F(x) as 
the unnormalized density function for -B(L,T)5 a log-concave distribution on 
{i£R" | x < xu}. Note that e~ßc'x is the bias (in favoring better objective 
values), and e-

amax(^(KL,^)(x)-ho) ^s me functi0n to damp this bias in regions that 
are infeasible. 

The selection of a and ß is done in two stages: (1) we first find ß such that at 
least half of the probability mass in the body (according to the density -B(L,X)) is in 
"the tip", and then (2) find a such that at least half the mass in the entire rectangle 
is in the body. 

25 



2.4.1    Getting in the tip 

For x in KL, the distribution F is a function of the c ■ x only (since tp(x) < 1). 

Lemma 1 IfL > 0,T > 0 and ß > ^, we have 

/■*.*"p-(1/2)/*/- 

Proof: Let c* = inf {c • y \y e KL}, z G Ä'L such that c- z = c* and A* be the 
intersection of the hyperplane c • x = c* + T and Ä". Clearly, the convexity of KL 

implies that IKLD{X:C-X<C*+T} F 1S not increased if we replace KL PI {X C • x < 
c* + T} by the convex hull of z and A*. Also, replacing KL C\ {x : c ■ x > c* + T} 
by the truncated cone formed by intersecting {x : c-x > c* + T} with the minimal 
pointed cone with vertex z containing A* cannot decrease / F over this set. So it 
suffices to prove the lemma with KL equal to the infinite cone. Then the ratio of 
integrals in the lemma is 

g+T(^)W~1area(A*)e-**dA     =     ß'+r(A _ cy-i e-ßxd A 

We change variables (and consult standard integral tables) to get: 

/0"A»-ie-^dA JO    A:!    • 

1       k i 
By picking ß = ^ the ratio is 1 — e"n ]C]J=o fr> which is > ^ for n > 1, so any 

T) 

ß    >     y , (2-2) 

will do. □ 

2.4.2    Staying in the body. 

We now show that at least \ of the mass is in the body KL, which would imply 
that at least \ of the mass of B(L,T) is in the tip (the near optimal feasible region), 
for a suitable choice of a. 
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Figure 2.2: The body versus a cone. 
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Figure 2.3: An example "thin" cone. 
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Let 8KL be the set of y in the boundary of KL- For any ( > 0 all of KL can 
be covered by a collection C of disjoint cones such that for each cone r G C, we 
have ||a; — y\\2 < ( for x, y G r H öüfj,. 

Now, if less than half of the mass according to -5(L,T) is in Ä£ then there must 
be a cone r € C such that less than half the mass according to B(L,T) restricted to 
r is in r n üTj,. By the arbitrary nature of ( we see the same must hold for some 
"infinitely" thin cone. Chose such a cone and let y be the point at which the cone 
intersects dK and set Ao = ||a;u — y\\2. 

Lemma 2 Suppose 

a > max (3ß(c -xu-L) + 3n-5, n(e2 + 1) + l) (2.3) 

Then the mass of any infinitesimal cone outside O/KL can be shown to be no more 
than the mass of the same cone inside KL , thus yielding a ratio of feasible to total 
of at least j. 

Proof: For the proof of this lemma only, it will be convenient to multiply 
masses by eßc'xU; so for any set S, we mean by the mass of S, the quantity 
ePc'xU Js F. The mass of the cone outside KL is given by: 

/ 
poo 

An_1^(c^-C.y)A_a(^_1)dA 

/*oo 
=     AJ   /      f»-le0(**u-*»)<-a(t-l)dt 

/CO 
e(t-l)(n-l)eß(cx»-c-y)t-a(t-l)dt 

=   \n
Qe

ß^xU-c^l(a -ß(c-xu-c-y)-(n- 1)). 

For the mass of the ray inside KL we will break into two cases depending if 
ß(c ■ xu — c ■ y) is > 2 or not. The mass of the ray inside KL is at least 

X°Xn-leßi(^-,y)dX 

=   A" / tn~leßt^xU-c^dt. 
Jo 

We now consider the two cases. 

29 



Case 1: ß(c - xu — c - y) > 2: An integration by parts gives the mass of the ray 
inside KL equals 

ß(c- xu - c-y) 
^ß(c^-cy) _ (n _ ^   f1 tn-2eßt(c-x»-c-y) dtj 

J 0 

> ^   (eß{c^-cy) _ /     _ j)   Z"1 e(t-l)(n-2)eßt(c.^-cy) ^ 
~   ß(c-xu -c-yy v 'h ' 

> Ke^*u-«y) (n-l) 
_    ß(c-xu -c-yy       ß(c-xu -c-y) + n-2'* 

The ratio of mass inside KL to outside is at least 

ß(c • xu — c - y) — 1    a — ß(c - xu — c- y) — n + 1 
ß(c- xu -c- y) + n -2 ß(c- xu -c-y) 

Since /?(c • xu — c-y) > 2 and a > 3/3(c • a;" — c • y) + 3n — 5, the ratio is at least 
1. 

Case 2: ß(c • xu — c • y) < 2: The mass of the ray inside KL is at least 

yielding a ratio of 

a - ß(c - xu - c ■ y) - (n - 1) min (l, e^'*"-*»)) 
neß(c-xu-c-y) 

which, by our assumption on ß, is at least 

a — 2 — (n — 1) 
ne2 

and since a > n(e2 + 1) + 1 this is at least 1. 

D 

Summarizing, we have the following: 
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Theorem 2 For any L > 0, T > 0 and F as in (2.1) with a, ß satisfying 

ß   >   I H     -     T 

a 

then 

>   max(3ß(c-xu-L) + 3n-5,n(e2 + l) + l) 

[ F> (1/4) /    F. 
J"the tip"     ~ W  } JW 

2.5    Sampling Procedure. 

We now show how to approximately sample according to F (= B^tT)). First, we 
discretize the rectangle xl < x < xu. Next, we find an approximation for F in 
regions not in KL- Third, we devise the transition matrix of a Markov chain which 
realizes the desired random walk. 

Let El denote the unit vector directed in the zth coordinate direction. Let Cs(p) 
denote the cube of side 28 centered at p. 

We will divide the rectangle xl < x < xu into small cubes of side 28 where 8 
will be specified later. 

U    =    I x G Rn X-^- e zn, Cs(x) n {y e Rn \ xl < y < xu} ± ^U) 
28 

J    =     [jCs{x) (2.5) 

We will take a random walk on the graph whose vertices are the set U of centers 
of cubes. Also, notice that even though there may be x € U such that x ^ xl we 
do have x + 81 > xl for all x G U. It is important to notice that the /<*, diameter 
of J is no more that  xu — xl     + 48. 

Many of the lemmas require that 8 not be too large with respect to xu, x3, a 
and ß. To formalize this we will can 8 "fine" if we have 

.  ,mmi{xf — x{)        1 ,n ^ 
8 < min  ^ ^, TTW-), (2.6) 

la /y/nßci 

and we will often invoke the following result. 

Proposition 1 If 8 is "fine " and a, ß meet the conditions of Theorem 2, then 

s ^ >7((e2 + l)n + l) for alii. 
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2.5.1    Discretization and Approximate Sampling using Member- 
ship Oracle. 

Errors due to two sources need to be analyzed here. One source of error is because 
we discretize the region, and approximate the integral ofF(x) over a small rectan- 
gle by F(p)* (volume of the rectangle), where p is the center of the rectangle. The 
second source of error is in computing the gauge function for points outside the 
feasible region. This is because in practice we may only be able to calculate F(p), 
an approximation for F(p) (using the membership oracle and bisection methods). 

In this section (and in section 2.6) we will need for every p £U that the integral 
of F over any rectangle C centered at p and approximately contained in Cg(p) is 
well approximated by F(p)Vol(C).x 

More precisely: For every p £ J we need to determine a lower bound on p 
such that for some continuous monotone decreasing function £ such that £(0) = 
and all rj > 0 in some open neighborhood of 0: if C is any rectangular region with 
center p contained in Cs+V (p) H J then 

'C-0'1» (vh) LF)£ FW £ w1-«1»)" (W(c) LF) •(2J) 

We will also need a lower bound on a such that 

<TF{X) < F(x + XEl) (2.8) 

for all x e K, i G {1 • • • n} and all |A| < 25. 
The lemma below summarizes the errors induced here. The proof is in sec- 

tion 2.8. 

Lemma 3 (2.7) and (2.8) hold with 

a   >   e~2a*/(mini(*"~s''))e~2/W||c|1« (2.9) 
e-aS/(mmi(x?-x{)) 

9   ~    1 + V2^ßS \\c\\2 erf (») e^2\f^ ^'^ 

1 The approximate containment, characterized by a parameter r), is technical point used only to 
facilitate the proof of Lemma 4. 
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Let F(x) be an approximation for F(x) calculated using only x and the mem- 
bership oracle. In the feasible region, F = F. In the infeasible region, F may not 
equal F because the dilation cannot be computed exactly. Note that for our analy- 
sis this must be a deterministic approximation and not one obtained by sampling; 
to be clear, we always calculate the same value for F(x). This is calculated to a 
relative accuracy of 1 ± £ (i.e. $F(x) < F(x) < $F(x).) 

To calculate F(x) to a relative accuracy of 1/11, it is sufficient to calculate the 
gauge function to an absolute error of ± ny12Jn)m To achieve this, it is sufficient to 
calculate the distance of the point in K on the line segment from x to xu that is 

farthest from xu to an absolute accuracy of H™"-^-^))   'phis can be done J 2\\xu-xf\\ a 
II Ü2 

very quickly by bisection search using our membership oracle. 

2.5.2    The Markov Chain. 

For each x € U let N(x) be the "neighborhood" of x which is the set of all 
vertices in U that differ from x in exactly one coordinate by ±28. The transition 
probabilities P(x,y) will be: 

P{x,y)= < 

i>n(l,fM) yeN(x) 

i-T,zeN(x)P(xiz) x = y (2-11) 
0 y 0 N(x) 

where F is a deterministic estimate for F. It is easy to see that P(x, y) induces 
a time reversible irreducible aperiodic Markov chain with steady state probabilities 
7r(-) proportional to F(-). We will show, in the next section, that after a sufficient 
number of steps, we are fairly close to the steady state. Let TT be the unique steady 
state distribution for our chain (approximately -B(L,T))- But first we show that in 
the steady state there is a reasonable chance of observing states corresponding to 
cubes covering the near optimal feasible portions of KL. 

Theorem 3 Let TT(-) be the steady state probabilities of the above Markov chain, 
then ifa,ß satisfy the conditions of Theorem 2 and 8 is "fine" and "the tip" is 
contained in J then 

xeu,cs(x)n"the tip"^® 
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Proof:   Accounting for the errors due to discretization and in gauge function 
computation, ir(x) (= DF(x)) satisfies 

D(l ~ TT)P (T^FT I     F)< *(x) < D(l + TT)P~
1
 (T^T I     A ■ y       \\}H \{2Sy Jcs(x)   )-   yi~    v       \VH    \(28yJcs{x)   j 

i (2.12) 
where D= (£,x&jF)~ . 

Now, since the "tip" probability is at least \ (by construction of F), we have 
the steady state probability of the cubes covering the tip is: 

£        *(*) > 1X(I-TT)P 
,,^w.. « 3x(l + i)p-! + 1 x (1 - ±)p' 

x&j,cs{x)n thetipV(ä v       n> v       n> 

6 is fine, so: 
aS < I (2-13) 

mini(x" - x{)      7 

and 
1 
7 

and the theorem follows from inequality (2.10). □ 

/^||c||2<-, (2.14) 

2.6    Spectral Gap of the Markov Chain. 

In this section, we determine how many steps are necessary for the Markov chain 
to "mix". We need to find a relationship between the number of steps walked and 
how close we are to the steady state. For this we need a central result of Sinclair 
and Jerrum [47]. We also need several well-know facts that are collected in [19]. 
Let X be the set of states in our Markov chain. For x, y e X, let Pt(x, y) be 
the probability that starting in state x we are in state y after t steps. As before, 
let 7T be the unique steady state distribution for our chain (approximately -B(L,T))- 

Recall that P(x,y) induces a time reversible irreducible aperiodic Markov chain; 
however, it is not strongly aperiodic [47]. This is because we do not insist that we 
have P(x, x) > \ for all x. Because of this, we not only need an upper bound 
for the second largest eigenvalue but also need a lower bound on the smallest 
eigenvalue [19]. 

We will use Proposition 3 from [19] which says: 
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vex 
P\x,y)-K{y)\< 

\ 

I-TT(X) 

TT(X) 
*\t (x*) 

where, x* = max(Xb \Xm\), where xi is the second largest eigenvalue and Xm 
is the smallest eigenvalue of P, the matrix of transition probabilities. 

We find an upper bound on x\ by appealing to a result of Sinclair and Jerrum's 
[47], which is quoted also as Proposition 6 of [19], namely, Xi < 1 — y, where 
0 is a lower bound on the "conductance" (defined in section 2.6.1) of the Markov 
chain. We find a lower bound on the conductance in section 2.6.1 below. A lower 
bound on Xm is obtained by appealing to Proposition 2 of [19], described in detail 
in section 2.6.2. 

We also prove that (see sections 2.6.1-2.6.2) \xm\ < 1 y. Thus, we have: 

El^.y)-T(y)l< 
y<=X 

1 
, (1 -■!—)* 

What we wish to do is find t so that J2yex \P\x^y) — ^(j/)! is under 1/12. 
Recall that by Theorem 3, the states of our Markov chain corresponding to cubes 
that cover the "tip" have mass at least 1/6. Thus, we will have a chance of at least 
1/6 — 1/12 = 1/12 that a random walk of t steps will end in one of the states 
corresponding to a cube covering the tip (i.e. close to the optimum). For this, it 
suffices to have 

*>ln /In   1- <? >ln 
21n(12)-In(7r(x)) 

(2.15) 
We now wish to prove a lower bound on ir(x^), our starting point, so that we 

can apply the above inequality. 
We assume that the walk is started deterministicly at x*. Since we know that 

at least half of the mass ofB^tT) is in the body and the highest possible stationary 
probability of a cube intersecting KL is at most eß^x +2Sl^~L^7r(xf) and there are 

at most n"=i 2(5 + 1 states in Ki (or even U), we know 

plO/11   1 
^12/112 

< n(x J\J3(c-(xf+2ST)-L) n 28 
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which yields 

TT(X^) > 
p25eß(L-c-(xf+28\)) 

xf-xl- 
—1 L 

28 i2n?=i 

but we will just use the easier form: 

5p2eß(L-cixf+28l)) 

+ 1 

12 
Ku—Tl 

28 + 1 

Plugging in, we get 

(2.16) 

Theorem 4 If the conditions of Theorem 3 are met then running the above Markov 
chain for at least 

2 ln(12) + In (ff) + ß(c ■ (x* + 281) - L) + n In 28 + 1 

<j? 
(2.17) 

steps is sufficient to ensure with probability at least ^, the chain will stop at a state 

x such that x + 81 is feasible and within cost T + 28 ||c||j of the optimal point. 

Although at the end of Section 2.4, we had shown that the steady state prob- 
ability of being in the tip is at least ^, now we only guarantee the probability 
that the sample is in the tip at the end of t steps is (at least) ^. Thus, the three 
sources of errors-discretization, approximation of the gauge function, walking for 
t steps-reduce the tip probability from | to ^. 

2.6.1    Conductance. 

Take aribtrary V C U and V = U \ V. We define the conductance of V by 

Hxev,vevnN(x)^(x)P(x,y) _ £^^eynArWmin(F(z),Hv)) 
9V 

min(7r(V),7r(V)) 2nmm(F(V),F(V)) 

The conductance of the chain defined by 

6 = min Sv. vcu 

(2.18) 

(2.19) 
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We use an "isoperimetric inequality" to find a lower bound for <f>. An isoperi- 
metric inequality was proved in [23]; a simpler proof of a stronger inequality was 
given in [40]. The inequality was generalized to the case of log-concave functions 
in [5]. We use here a version of this from [21]. If dist(x,y) = ||a; — y\\ where 
11 • 11 is an arbitrary norm on R" and diam(.ft') = maxj-^g^ dist(x, y) we have the 
following theorem from [21]: 

Theorem 5 Let J CR" be a convex body and F a log-concave function defined 
on int J and fx the induced measure. Let Sx^Sj C J, and t < dist^i,^) and 
d > diam( J). IfB = J\(SiU S2), then 

minMSO,^)) < \(d/t)n(B). (2.20) 

We will use dist(x, y) = \\x — y]]^. 

Lemma 4 If 8 is fine then </> >     n J ^i    = 4> (say). 
Jlh I I X X      II 

II 11 CO 

Proof: For any V C U and V = U \ V, and 

VS   =    U Cs{x) 
xev 

Vs   =    \JCs(x) 
x£V 

Let rj be a small positive real that will tend to zero. Let Bs be the rj/2 neighborhood 
of Vs Pi Vs and Bs(x, y) be the rj/2 neighborhood of C&( x) n Cs{y). Let S\,S2 and 
BbeVs\Bs,Vs\ Bs and Bs fl J respectively. 

From inequalities (2.7), (2.8), (2.9), (2.10) and (2.12), it is clear that 

£       mm(F(x)J(y))   >   ^        E       rmn(F(x),F(y)) 
x£V,y£VnN(x) xt=V,y£VnN(x) 

> ^    £    Ffx + V 

x€V,yeVnN(x) 

10 >   — V 1 j 
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> lg,/», ,/ F 
ll?7(2^ + ?7)"-1 JBS 

Y^ JB 
>   ll ££  , F 
~    11 r)(28 + ri)"-1 JB 

similarly H^),F(^))   <   1?      '      mi„ (/ F,/  F) 

< 

ll<7p(2(^       Uv,   Vy/ 

i - ??)n mm Us,  'A2  y llap(25-?7)n        Vi5, 

From the isoperimetric inequality, 

Is*1 > 2V 
mm(JSiF,JS2F)- ||o-- ^+4<T 

Combining this with the inequalities above and taking the limit r\ —> 0 we get: 

2$cr2p2S 

*-Ml*"-*'lloo+4*)' (       ) 

Since £ is fine (from inequalities (2.10),(2.9)) 
r 

<£ > ^—M m- = $• (2-22) 
II llco 

D 

2.6.2    Comparison of xi and |x m 

Here we find a lower bound for Xm, by the canonical odd path argument outlined 
in Proposition 2 of [19]. 

Let 
A = iriTu—nr • (223) 

For each state x let u^ be the smallest non-negative integer such that P(x + 
2LJXSE

1
,X + 2uxSEl) > A (this is always possible since P(a, a) > ^ > A on 

the border of our bounding region). Let ax be the 2ux + 1 step path of from x to 
x given by: 

"self loop" 

a; H> a + 2<J£
1 ^ x + 4SE1 H- • • • x + luJE1 >-> a + 2a;a;££1 i-> • ■ ■ z +   frg1 »-4 g + 2££ i- 
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We will call ax "the canonical odd path for x". 
Proposition 6 of [19] states for any selection of canonical odd paths we have 

Xm > -1 + 7, where 

where   \\cr. 

(a,6) *,3(a,b) 

1 II      —f      v^ 

(2.24) 

(2.25) 

To prove the bound for x*, we will show that |xTO | is less than the upper bound 
for xi- From the discussion above, it is sufficient to show the following. 

Lemma 5 t < 4- 
— fit 

Proof: By our choice of paths, we have for any i < ux — 1: 

£-A   <   P(x + i2SE\x + (i + l)2SEl)   <   ± 
P(x + (i + l)2SE\x + i2SEl)   <   £ 

and by time reversibility 

/     /•   ,vnfnh     P(x + i2SE\x + (i + l)2SEl)   .     .„_., ^ £ - A   .     ._., 
,(,+(.+l)MB') = ^ + (i+i;2^x + ;2^^^-) > l^-^-WfE1). 

For any x we have, 

'slip < 2E + 
^7r(a;)(l-2An)i(i-A)      TT(Z)(1 - 2An)"*A 

X, —x, 

-W-L + l 25" 

<  2    £ if      7r(*)(l-2An)'-(i-A) 
+ 

7r(a;)A(l ■ -2An) 
1     ' +1 26      +1 

<   2 
vt> 1 Jb 1 

2«J 
+ 1 

2n 

TT(X)   1- 2« 

+ — 
2An)      TT(X)A (1 25 2An 

Using Proposition 1 it is easy to show that 

U/ 1 .!< 1 

2(J 
+ 2 2An < -. _ 3 
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Continuing, 

Wx\\p     < 
1 1 

28 
6n 3 + 

7r(x)     27r(x)A 

Because each edge can be used by at most 

we have 
28 + 1 canonical odd paths, 

L< 
2* 

+ 1 25 + 1 6n + 
2A. 

(2.26) 

The result now follows from Lemma 4, inequality (2.26) and Proposition 1. □ 

2.7   Description and Analysis of the Algorithm. 

Suppose we are given a feasible point x^,a relative accuracy goal (e) and a desired 
upper bound on the probability that the algorithm fails (K). Let v be the ratio of 
c • x* to c • xop<. We assume that without loss of generality, the problem has been 
rescaled so ct- = 1 for all i (x{ —> CiXj, C{ —> f-, — 1). 

2.7.1    In the worst case 

Here, we assume that n > 2 and e < 1. We present AlgorithmA. 
The analysis of AlgorithmA is fairly straight forward. 

• It is easy to see that xu such that a;" = J2j xj must dominate any optimal 
point. 

• Each time we draw a sample according to Theorem (4) we have at least a 
chance of -k that it is feasible and within a cost of T + 2n8 of the optimum. 

We have picked T and 8 such that T + 2n8 < 

• When the repeat loop terminates either 

i—il    3 ->■■!     J 

-Ei*r< 
. t    y.xf+L 
best <- i—i)   3 or 
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Input: x*, e, K, C and a membership oracle for K. 
rescale problem so c = 1 
xl <-0 

xbest <- xf 

while £,- x{ -L> eL 

x? <- 2 Ej »j , * = 1 • • • n 

(point-wise lower bound) 
(probalistic cost lower bound) 
(the best feasible solution observed) 

7»2E^f 
T 

8^ T 
49n2 

repeat log M91+' 

(point-wise upper bound) 

(| of the current gap) 
(objective function "bias") 

(gauge function gain) 
(step size) 

best <- IC; aj +1, 
times or until £,- %i    _^       2 

run the random walk of section 2.5 with the above parameters for the number of 
steps prescribed in Theorem 4, let x be the stopping point of the walk. 

if x + 81 feasible and E;(z; + 6) < £,- ^est 

then xhest +-X + 61 
endrepeat 

best if£,-sri>     2 

J xJ <— a; 
endwhile 

return x* 

then L 
best 

TXUL 

- D ^est - T - 2n8 

Figure 2.4: Algorithm A. 
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- enough samples have been drawn such that with confidence at least 
i 

(1 — K) Il082'^ I+I one of them was feasible and within distance T + 2nS 
of the optimum. 

Either way, the distance from the new x* to the new L is no more than half 
of the old distance. 

• Thus, the outer while loop will run no more than [log2 (-t J] times. 

• Furthermore, we see the first time the algorithm alters the lower bound (it 

must establish a lower bound to halt), we have L > ^-^— T — 2nS > 

7 2-ji xi • 

- Therefore, the outer while loop will cycle no more than   log2 y- 
more times. 

lo& ft - Thus the lower bound can be altered at most log, (Lr)   +1 times. 

- Since each lower bound alteration is correct with chance at least (1 — 
i 

K) 11082(<) I+I We see that they all are correct with odds at least 1 — K. 

Thus the algorithm fails with chance less than K. 

We must check that a, ß and S were picked correctly. 

• ß clearly satisfies inequality (2.2). 

• Assuming that n > 2, we see that a satisfies inequality (2.3). 

• It is easy to see that inequality (2.6) is satisfied. 

• Invoking Lemma (4), <j> > -^^. 

(6174)2n6 (l+3.2n+n In (i^i+2) ) 
• So t   —    ^ 2— — steps are enough to draw a sample. 

Thus, each sample can be drawn in 0 (    °r^ j steps. 

• Each step requires at most 0 (log (^ J J membership queries to compute the 
gauge function. 
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So the total number of membership queries is 

/^(log(!))2log(^)logQ\ 
0 

e2 (2.27) 

V / 

which, if we ignore lesser log factors, can be thought of as 0~ ( 2 
og^' 

It is quite natural to wonder if an algorithm with this poor a runtime can 
possibly be an improvement on the ellipsoid algorithm. In [33] the version of 
the Yudin- Nemirovskiii separation from membership algorithm requires 0~(n6) 
membership tests to build a single approximate separator and then the shallow 
cut ellipsoid algorithm may need (9~(n4) separators to optimize. It must be 
emphasized that this reference in only concerned with proving the problem is in 
P, so it is unlikely that 0~(n10) membership queries is the best known. Finally it 
should be emphasized that the ellipsoid algorithm doesn't have a super logarithmic 
dependence on e. 

Remark: 1 With a new result of Frieze, Kannan and Poison that the algorithm 
outlined here can have it's dependence on n brought down to n6 by performing the 
sampling walk in a bounding sphere instead of a bounding box and estimating x* 
without introducing the idea of conductance. Other methods such as using newer 
chains available from Lovasz and Simonovits, or Kannan, Lovasz and Simonovits 
allow running times ofO(n5) and possibly 0(n3). None of these improvements 
are capable of replacing the dependence on e with one on log(e) 

2.7.2    With advantageous bounds. 

Here we analyze the situation where good bounds xl, L and xu are known and 
attempt to lower the dependence of the runtime on n. To do this meaningfully, all 
dot products (and norms other than infinity) must be removed from the expressions 
as they hide n's. In this subsection, we work out a bound on run time that explicitly 
shows all of the powers of n. 

We still assume that the problem has been rescaled so c; = lforalH(£; —> ciX{, 
Ci ->• a = 1) and that 

"^ " *') l    >   I (2.28) 
mim x\ 2 
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and min(:r") + min(cc])   >   2 

This is easy to ensure by replacing xf with  x*     + \\x'i 
oo 

interpretation of making the problem "well rounded". 

(2.29) 

and has the geometric 

We notice that if e > 
min; X; 1 then x* is already a solution of the desired 

accuracy. This and inequality (2.29) imply 

I       Moo %    X   \, o 
; ^1 ^-" 

e min,- x 
(2.30) 

Rather than the adaptive approach, first consider a sampling algorithm that 
comes within e of optimal in one long walk: 

• We set L = andT 

• We will chose ß to be at least j^ instead of as stated in inequality (2.2). 
The ji is required to guarantee that we get within T of the optimum instead 
of the T + 28 \\c\\x we could expect because of discretization. To guarantee 
this, we must show that ^ min2- x\ > 2nS. 

- So we set 

ß = 
11 

10emin8a;' 

and a= —v"    "°° %} 

e min; x\ 

- By inequality (2.30), this satisfies inequality (2.3). 

- Now setting 

(2.31) 

(2.32) 

- _ e mint- x\ 
~     70n 

satisfies inequality (2.6), by inequality (2.28). 

- Clearly, we have 2nS < ^emini x\. 

So the 28 \\c\\ x factor has been dealt with. 

(2.33) 
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Now, by Lemma (4) and Theorem (4), we have 

e min,- x'- 
2l0n2\\xu -xl 

7 + 
lln x f 

10emin,a;- 
+ nln 

70n xu — xl 

2emin,a;- 
+ 1 

Which, if we take the middle term of the sum to be dominant, is 

0 n 
xu — xl 

\ 
e min8- x\ 

I 

steps. 

210n2 xu — xl 

emini x 

(2.34) 

2" 

^13 5) 

(2.36) 

We will call this algorithm AlgorithmB. AlgorithmB can then be repeated 
ln(/t) times to amplify the chance of success to at least 1 — re. 

IL«_,.M| 
f^ can be improved by designing a new algorithm 

ln(ll/12) 

The dependence on 
(AlgorithmC) that runs AlgorithmB in stages like we did for AlgorithmA. 

The analysis is as before and the run time comes out to 

e min; x) 

( 

0 n 
xu — xl 

In 
n x" — x' 

\ 
emmiX\ e min,- x 

(2.37) 

membership queries. 

2.8    Errors Due to Discretization 

For every p G J we need to determine a lower bound on p such that for some 
continuous monotone decreasing function £ such that £(0) = 0 and all r\ > 0 
in some open neighborhood of 0: if C is any rectangular region with center p 
contained in C$+V(p) D J then 

p(i - m) [vol{C)JcFJ ~ F(p)<(p(i-ttvm {vol(C)JcF)' 
(2.38) 
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We will also need a lower bound on a such that 

crF(x) < F(x + XE{) (2.39) 

for all x € K, i e {1 • • • n} and all |A| < 28. 
For vectors a and 6 let ab be the vector (ab)i = afc. To facilitate the analysis we 

break F into its two constiment parts/and # where/(a0 = e~a(max(^ifL'-")(a;)-1,0)), 
g(x) = e~ßc'x, and F(x) = f(x)g(x). 

a is easy to deal with when we apply the well known fact that a gauge function 
based on K can fall no faster than one based on a convex subset of K (containing 
xu). To be precise we apply Corollary 52 from [5] to get: 

\\x — v\\ 
\i>(KL,x*){x) - il>(KL0»)(y)\ <   .  , u   °°A rami(x? - xj) 

which implies 

and inequality 2.39 is satisfied with 

a _ e-2a5/(mini(^-^))e-2/35||c|Li (2.41) 

To get a lower bound on p we use the simple rule that for /, g > 0 

min(/(a;))     g <     fg < max(/) / g 
xecyjy " Jc       Jc xtcyj > Jc 

and use inequality 2.40 to get the point-wise bounds on /. All that remains is to 
derive a lower bound p' such that 

'{vmfcs)*M*rivkr)Joa)-      (2'42) 

We note that g is of the form g(x) — h(c- x) for some non-negative convex function 
h in the region we are interested in and since C is symmetric about p we know 
that (from Jensen's inequality) 

M^vkc)L* AC) 

and any p'~x < 1 satisfies the right side of inequality 2.42. 
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To get the left side of inequality 2.42 we define 

E{    =    max {A e R | p + XEi € C) 

D    =    {x G R™ | \xi — CiPi\ < CjHj Vi} 

and change variables to get: 

Let //(A) be the measure of the set 

[x eD   x-l-p- c> A} 

It is easy to see ß is differentiable and — /J,'(X) > 0 for A e [0, C • E]. We return to 
our integral (using the estimate fi(X) — fi(X + dX) = —ß'(X)dX): 

=   „   \   p   r V(A) (c-«°*+*> + e-K°*-x>) d A 
11;= 1 ^Cj'-'t •'O 

=   9{P)~1 _   rcosh(/?Ay(A)dA 
11«'= 1 ^i^i J{J 

= ffw(1 + nÜ%inh(A)"(A)dA) 
By Theorem 2 of [36], we have //(A) < (n?=i 2c,-3j) e-A2/(2||cs||l)_ So continuing 
we have: 

We need an upper bound for 

2^rHsinh(A)e-A2/(2llcS^dA 
Jo 
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which comes out to (by standard integral tables) 

ß \\cE\\2 ,/Je«/2 (2erf (^k) + erf 

<   V^ß(5 + yftn) \\c\\2 erf (^±^Ml\ cmvW|g/2 

which for sufficiently small r\ > 0 (and r\ = 0) is 

< ^^||c||2erff^Ha^ ^IWß/2(l +o(l)) 

combining this with our point-wise bound on / we get 

g-aS/immiixf-x?)) 

P> 
1 + V^ßS \\c\\2 erf (^) eWMIl/* 

2.9   Relation to Simulated Annealing 

The above algorithm has some similarities with simulated annealing.[45] In simu- 
lated annealing optimization is performed by moving from feasible state to feasible 
state by choosing moves from small neighborhoods. The moves are selected and 
rejected in a manner almost identical to the Metropolis filter as applied to our 
function. The fact that our algorithm steps through infeasible states is not very im- 
portant. This it is an artifice introduced to improve the mixing rate of the Markov 
chain by removing small sets from consideration. The constants in any simulated 
annealing problem can also be hidden in the objective function (similar to La- 
grangian relaxation). The second point of similarity is that where our algorithm 
moves its upper bound (by finding a sufficiently better new best point) or lower 
bound (by building a probalistic proof) is exactly like altering the "temperature" 
parameter in the Boltzmann equation that selects moves in simulated annealing. 
In fact, though we have not found any advantage to it, we could redesign our algo- 
rithm to alter ß and 7 continuously to imitate simulated annealing. Unfortunately 
this would mean that the chain is no longer stationary (as the chain's transition 
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behavior would change over time). One could make crude arguments that the 
chains behavior over any time period would be no worse than if it had been run 
with the parameters at the end of the time period. Then one could appeal to a 
Markov chain central limit theorem to show that the "tip" would still be visited 
with high frequency. 

It is a very interesting open problem to try and extend the theory of rapidly 
mixing Markov chains to the stochastic processes like simulated annealing. 

2.10    Small Sets 

The treatment of rapidly mixing Markov chains given here completely avoided 
the "small set" issue by allowing the chain to move to infeasible states and then 
applying a punishment factor to return the chain to the feasible region. This had the 
disadvantage of introducing a hard to characterize gauge style function depending 
on a. This forced us to make S very small so we could apply crude point-wise 
bounds on this gauge function, whereas for the bias function we were able to 
make more sophisticated estimates of variation over regions (via the Hoeffding 
inequality) that would have allowed S to be a factor of y/n larger and shaved a 
factor of n off the running time of the Markov chain. 

The small set problem is that if we have a Markov chain on a set of points 
chosen from a convex body that conductance is poor near the boundary of the body. 
In fact if the chain uses only states that are such convex bodies it may not even 
be connected. An example is K = Ux, y) € R2 y > 0, y < |x, y > 3x — 3 j. 
ZnDK = {(0,0),(l,0),(l,l),(2,3)}whichisn'tconnectedbytheKing'smoves 
that changes a single coordinate by ±1. We are certainly not going to be able to 
get a strong conductance result for this chain as the set {(2,3)} is inescapable. 
There are a number of ways to deal with the above problem. The one we used is 
to walk on a large region of Zn instead of Zn n K and try to force the chain into 
K with a penalty function. This has the advantage of simplifying the structure of 
the chain and the disadvantage of introducing a hard to analyze penalty function. 

Lovasz and Simonovits [40] dealt with this problem by introducing a notion 
called s-conductance. The s-conductance of a Markov chain is not the worst escape 
probability of any set of states in the chain but the worst escape probability of any 
large set of states in the chain. The authors then perform a fairly delicate analysis 
to show that analogues of the convergence theorems known for conductance are 
true for s-conductance. Nothing comes for free so some care must be made that 
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the chain does not start in a small set. In addition to the improved mixing rate 
of the Markov chain described in this paper this paper is significant because it 
formalizes many of the geometric methods used in this field into well contained 
lemmas (such as "localization"). 

Frieze, Kannan and Poison [28] deal with the problem in a similar manner. 
They use a strong minimax characterization of the eigenvalues of the linear op- 
erator representing the Markov chain. In this characterization the convergence 
rate of the Markov chain basically the gap between the eigenvalue 1 and the next 
largest eigenvalue (the separation of eigenvalues from -1 is usually easy to show). 
By the minimax characterization the second largest eigenvalue is the eigenvalue 
corresponding the vector <f> the maximizes the Rayleigh quotient 4>TP4>/(f)T(f> sub- 
ject to 4>

T
TT = 0 where it is the stationary distribution. It turns out that similar 

convergence theorems can be proven for the vector that maximizes this quotient 
subject to the additional restrictions that it places no mass in any of the states near 
the boundary of K. The restrictions are easily expressed as linear relations and 
lead to an analysis that has similar consequences to the s-conductance arguments. 
Again the restricted result is weaker that the classical result and care must be 
taken that one does not start near any of the bad states. The direct handling of 
eigenvalues and eigenvectors, without explicit mention of conductance, are likely 
to yield many more results in the near future. 

A last concept that is in development by Kannan, Lovasz and Simonovits 
is average local conductance. Local conductance, introduced by Lovasz and 
Simonovits, is the chance that Xt ^ Xt+i or that the chain makes a non- 
trivial transition. Average local conductance is the expected value of P[Xt -^ 
Xt+i \Xt is 7T distributed]. Most current analysis of Markov chains state how many 
steps the chain must run for some property to hold. Average local conductance re- 
sults are theorems of the form "after so many non-trivial transitions some property 
holds." These results are much more powerful as they not only allow one much 
more freedom in trying to estimate how bad states affect a Markov chain (one can 
show there are not many of them, or one is unlikely to visit them) but one also has 
the option of proving nothing about average local conductance and running chains 
until one observers empirically that the requisite number of non-trivial transitions 
have been taken. 
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2.11    Stopping time. 

Our actual implementation, while not practical for general use, allowed us to 
empirically observe an expected behavior of the Markov chain. Since all our 
proofs of stopping time must, to be correct, be pessimistic. The chain will improve 
its "best" point much faster that the analysis indicates and it is worth the extra 
effort to continuously monitor the chain and restart it at a new best point when 
any significant fraction of improvement is noticed in objective value. With this 
modification the chain very quickly restricts to a small neighborhood of the true 
optimal point and then only has to run to the theoretical stopping time one set of 
times: to prove the lower bound. In practice almost all of the running time of this 
algorithm is used in proving the final lower bound. 

2.12    King's move data structures. 

Using the King's move has a number of implementation advantages over using a 
continuous move structure. First many fewer random bits are needed as we only 
need log(n) coin flips to decide which direction to go and some constant number 
of coin flips to decide whether to go or not (as we have restricted F to vary by no 
more than a constant). We can also update our state in constant time (change one 
entry in a vector). We have also found that membership in K and be checked faster 
than is the case for more general moves. If K is given by m linear inequalities then 
by incrementally updating all of the linear relations we can check membership in 
0(m) time instead of 0(mn). 

We have tried building a membership oracle for the component commonality 
problem by simulating the numerical integrations required to test membership 
in K by using sums over historic data. K is defined as the set of x G RTO 

such that / pn A <x F(y) > 7 where F is the probability density function 
for the month's total orders. We approximate K with the non-convex body 
Ks = \x e Rm -s Ei=i, Ayi<x ! ^ 7} where yx, • • •,ys are points drawn from 
Rn according to trie density F. We are using the standard statistical trick of using 
the "empirical distribution" derived from previous observations to simulate the 
true distribution. We know by central limit arguments that lim^oo Ks = K. We, 
of course, have the problem that the empirical distribution is always atomic and 
Ks is almost never convex. It was shown by Applegate and Kannan [5] that small 
departures from true convexity do not overwhelm the Markov chain technique. 

51 



Notice that by organizing multiple copies of y\, • ■ •, ys each copy sorted by a 
different coordinate we can compute membership in Ks in time O(s) instead of 
0{ms). 

These savings are very important since the Markov chain we use the mem- 
bership oracle every step and the membership oracle performs, by far, the most 
expensive operation each step. 
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Chapter 3 

Contingency Tables: Exact and 
Approximate Counting 

3.1    Background. 

Consider an m by n matrix of non-negative integers. This matrix, called a contin- 
gency table is an important summary tool in statistics and arises in the following 
manner. Consider a finite multi-set1 with elements (i,j) (a € [1 • • -ra], b £ 
[1 • • • n]). For each such (i, j) let 7r,-j denote the probability that an element drawn 
out of the multi-set with uniform probability is equal to (i,j). If such a multi-set 
represented a population of people that are identified only by hair color (Black, 
Brunette, Red, Blonde) and eye color (Brown, Blue, Hazel, Green) then 7rBiack,Green 
would be the probability that a person picked from this population uniformly at 
random would have both black hair and green eyes. A possible experiment would 
be to draw a multi-set sample, S, of T elements out of the original multi-set (for 
simplicity assume we draw with replacement). We could then summarize this 
experiment in an ra by n matrix X where 

Xij = the number of occurrences of (i, j) in S. (3.1) 

Define 71-;,* = YJj=\ ^i,j and 7r*j = YHL\ ^i,j- We consider the distribution to 
be independent if 7T;j = 7r8',*7r*j Vi, j. Of immediate statistical interest is testing 
if the original population is independent, given an observed sample X. As is often 

1A set the allows repetitions. 
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the case in statistics we can not, without additional information, in the form of 
priors, determine if the "Null Hypothesis" Hi : 7r,-j = ir^ir^j Vi, j is likely to be 
true or false. Instead we calculate a significance or how likely X's deviation from 
independence would be if Hi were true. If X is too far from independent (X{tj too 
far from X^X^j/T) then we may suspect that the original population was not Hi 
distributed. 

3.2    Statistical hypothesis testing. 

The obvious method for testing if X is typical, assuming Hi, would be to use the 
Xij/T as observed estimates for the TTJJ and then to check if the independence 
relations approximately hold. This requires estimating (n — 1) (m — 1) parameters 
from the experiment. A slightly more subtle approach is to let r,- = X,,* and 
Cj = XKJ and look at the, unknown, distribution restricted to Ys such that Yit* = r2 

and F*j = Cj. The density function for any population obeying Hi restricted to 
the row and column conditions is independent of all of the, unknown, 7r;js. If fact 
P(Y\r, c) (the probability of observing the table non-negative integral table Y that 
has row/column totals matching r and c is the so called Fisher/Yates distribution: 

X! 

P(Y\r, c) = rc-'y^     y (3-2) 

ln£W) J (jitter J 
Thus for two different distributions n1, IT

2
 on the original population that obey the 

independence hypothesis Hi we have for any two tables X, Y such that X,,* = 1^* 
and X*,j = Y*j we have Pwl {X)/Pvi (Y) = P^ (X)/P7r2 (Y) even though P.. (X) 
may be very different from Pvi(X). 

Because of this observation it is considered good practice (c.f. [16]) to perform 
the desired significance tests in the subset of contingency tables that have Yit* — rt- 
andKj = Cj. Given this restriction we see that measuring the deviation of X from 
independence is equivalent to measuring the deviation of X from the intersection 
of the independence surface and the subspace of tables that obey the row and 
column restrictions. The surface and restriction subspace intersect at exactly one 
point Y such that Y^j = Xi^X^j/T so we have again reduced the hypothesis Hi 
to a single table (instead of a surface of tables) but this time without estimating 
(n — \){m — 1) parameters. This method is not very different from the obvious 
one given above but does permit a sharper analysis (and tighter bounds). 
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It is easy to show the above density function is log-concave (replace x! with 
T(x +1) everywhere and notice that tp^\x) = d j^^ is non-negative for x > 
[1] 6.4.10). Thus we know that if the density will fall off at least as fast as some 
exponential as distance from the mode decreases. It can be shown that in a wide 
variety of circumstances that the mode is very near the independent table2 so 
the most important component of significance is going to be distance from the 
independent table. 

A natural candidate for this metric is the "chi-square" distance which is defined 
as: 

(Y- ■ — Xi>*x*-A 
X\Y) = ^[ %..,.!   L- (3-3) 

hi T 

The x2 of a table Y is just the square distance of Y from independent where 
each coordinate is rescaled by a factor of Xit*X*tj/T. A natural significance test for 
Y is then to measure the proportion of the Fisher-Yates distribution corresponding 
to tables with x2 higher than Y. If very few tables have x2 higher than Y we 
should know that Y is a unlikely table under the independence hypothesis H\. 

3.2.1    Fisher-Yates test 

There are a lot of asymptotic methods for computing the significance (with respect 
to the Fisher-Yates distribution) of a contingency table [42, 30, 6, 7]. Most of 
these techniques rely on the central limit theorem and normal approximations to 
the Fisher-Yates distribution. These method are often quite far off for moderate 
sized tables. 

Fortunately there is an obvious pseudo polynomial scheme for generating such 
tables from the Fisher-Yates distribution. So randomized approximation schemes 
are easy to implement.  Consider the complete bipartite graph with vertex sets 
Vi,y2(|Vi| = |v2| = r). 

V\    =    {(i, k) | i = 1 • • • m, k = 1 • • • r,-} 

2The mode isn't always at the independent table. Consider a tables with row sums 
[1 1 1 1 1 1 10] and column sums [111111 10]. The independent table has density 
about 0.006 while the table Y with Yitj = 0 for i, j < 7, Y;,7 = 1 for i < 1, Yltj = 1 for j < 7 and 
Y7|7 = 4 has density about .026. These two tables differ by more than 2 in the bottom right entry. 
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Select a perfect matching M uniformly at random. Notice that there are T\ such 
perfect matchings (vertices are distinguishable, edges are not). Now associate 
with M the following table: 

X{j — |edges of the form ((i, k), (j, I)) for any k,l\ 

Notice   X   obeys   the   row/column   sums   r,c   and   there   are   exactly 

(nr=1(-o)(n;=1feo) A.„ ♦ ♦».• v-n.    ■* —r-rm r-tn  ,y   h     difterent perfect matchings that map to this X. Thus uniform 
lli=i llj=iiA'.>-J 

M leads to Fisher-Yates distributed X. 

'i.l.l   Uniform test 

A major problem with the Fisher-Yates distribution is that it is very tightly concen- 
trated about its mode. This causes to Fisher-Yates test to reject almost all tables 
when T is large. For example the Fisher-Yates test will reject all tables where 
Xij differs from the independent value X+jXi^/T by more than JX*jXi:*/T. 
This guarantees rejection if any constant percentage of the classifications are in 
error, no matter how small, is present in the data. Diaconis and Efron [16] suggest 
a number of techniques to deal with this problem including a significance test 
based on the uniform distribution. For this test the significance is the ratio of the 
number of contingency tables with x2 greater than x2(F) (and identical row and 
column sums) to the total number of tables with the given row and column sums 
= J|(r, c). This test has the nice property that it depends on the structure of the 
table Y much more strongly than it depends on T. The difficulty is that computing 
the numerator of this ratio has been shown to be $P hard in general. [24] Another 
quantity of interest is the "likelihood ratio statistic" which is the ratio of how likely 
a table is under the Fisher-Yates distribution to how likely the table is under the 
uniform distribution (= P(Y\r, c)/(l/jj(r, c))). This quantity is useful in making 
qualitative statements about a table. This can be important because if one decides 
to reject the independence hypothesis Hi one often still needs to characterize the 
table in question. 

3.2.3    Some counting preliminaries 

We now investigate jj(r, c) in its own right. Good references for this problem are 
[18,16,20]. 
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—* 
When we have m = n and r = c = k\ the problem reduces the the classic 

problem of counting the number of magic squares. The counting function turns 
out to be polynomial of degree (ra — 1) (ra — 1) in fc. The highest degree coefficient 
of this polynomial is the volume of the transportation polytope, a quantity of 
independent interest. Blakley[13] showed that J|(r, c) is apiecewise polynomial (in 
r, c) of degree (m — l)(n — 1) and [15] reproves this result. Sturmfels strengthens 
these results [51, 52] and we have reworked his proofs to create an effective 
procedure for fixed ra, n. 

From [52] a generating function for jj(r, c) is: 

m  n-\ I / m \    ln—\ 

i=M=iv     Wo      Pl...f.m,Cl...Cn_l6zlCn=^"iPi-2»-'Ci;riC>o ^      '  \i=i 
(3.4) 

3.3    Barvinok's algorithm. 

Barvinok [8] recently published a polynomial time algorithm for counting the 
number of integer points in any integral polytope in fixed dimension. This result 
implies that counting the number of contingency tables for fixed ra, ra is solvable 
in polynomial time. Barvinok's result reduces the counting problem to solving a 
family of sums over the lattice points in a set of cones. This counting scheme, if 
applied directly, would run in time proportional to the the index, with respect to 
the standard lattice, of the integer lattice intersected with these cones. In general 
these indices (also called the cardinality of the glue group in Conway and Sloan) 
can be double exponential in the size of presentation. 

For any simple rational cone K in Rd let XK be the indicator function of K. 
That is XK(X) = 1 if x € K and 0 otherwise. Since K is a simple rational 
cone there is a linear independent set of integral vectors u\,---Uk that generate 
K. Ind(A') is then the size of the quotient group (Zn n Lin(ui, • • ■ ,uk))/ < 
«i, • • •, Uk >■ Barvinok identifies a scheme which finds cones Ki, ■ ■ •, Ks and 
integers eu ••-,£« such that XK = T,t=\eiXKi and Ind(Ä,-) < lad(K)^-l^d 

where d is the, fixed, dimension of space. Thus in only a log-log number of 
levels of recursion the problem can be reduced to problems involving only cones 
with constant index. This method has not been directly applied to contingency 
tables, though the unimodular nature of the contingency table relations may admit 
a number of improvements over the general algorithm. 

57 



3.4   Piecewise polynomialality of the number of con- 
tingency tables. 

Here we give a simple proof of the fact that the number of contingency table is 
piecewise polynomial function of row and column sums where the number of 
pieces is at most (tiffl)("+m' for n by m contingency tables. The proof is not 
specialized to contingency tables, but applies to any counting problem involving 
totally unimodular constraints. 

Take A, a totally unimodular d by w matrix of rank d such that the only solution 
to Ax = 0, x > 0 is x = 0. For any v e Rd let Pv be the polytope defined by 

Pv = {x e R
w | x > 0 , Ax = v}. (3.5) 

We call 
j{v)^\pvnz

w\ (3.6) 

the counting function of A. 

Theorem 6 If A is as above then the counting function of A is a piecewise 
polynomial with no more than d( ^-M pieces and total degree equal tow — d. 

This is not a new result (this was known to [15] and much stronger results are 
known by Sturmfels [51, 52, 11]) but the presentation given here is, hopefully, 
more approachable and is useful in describing the algorithms. In addition to 
proving the counting function is piecewise polynomial we demonstrate a poly 
time (for fixed dimension) method of computing the decomposition into pieces 
and techniques for inferring the polynomials. These methods can be strengthened 
to deal with the non-unimodular case but run in time proportional to the indices 
of various sub lattices in the standard lattice. Before we prove the theorem we 
present some geometric lemmas. 

We wish to find conditions on u, v so that the operation of Minkowski addition 
(point-wise adding two sets) and adding right hand sides of linear relations are 
identical, or 

Pu + Pv = Pu+v (3-7) 

Remark: 2 Clearly Pu + Pv C Pu+V but this containment can be strict, example: 

A   = 
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u   =   { 1   99 }T 

v   =   {99   1 }T 

Pu + Pv ~ {(x, y) £R2 \x>0, y>0, x + y <   , x+   y <   } while Pu+V ~ 

{(x,y) eR2 \x>0, y>0, x + 2y < 100}. 

Let El G R™ be the standard basis vector such that E\ = Si,-. Let x be an 
arbitrary vertex of Pu. At least w — d of the entries of a; must be zero and there 
is a a C {1,2, • • • w} such that |<r| = d, X{ = 0 for i £ a, and if A' is A with the 
w — d rows £*, i ^ cr added on then A' is rank w. For matrices A let Aa denote the 
d by d matrix formed by taking (in order) the columns A{ s.t. i € a, for vectors 
x let x^ denote the d-vector corresponding the the entries whose indices are in a. 
In linear programming terms Aa is a basis and a is the indices of set of columns 
corresponding in this basis. We see that if Ax = u then we must have Aaxc = u 
and I det(ACT)| = | det(A')|. So Aa is full rank and we see that x„ = A~lu, so x is 
completely determined by a (or, again in linear programming terms, the naming 
of the basis determines a basic solution). 

Define the sets of indices corresponding to basic solutions: 

J5 = {<rC {1,2,■••«>} I \<r\ = d, det(ACT)^0}. (3.8) 

And further define 

R= {xeR I 3ae B, x is arow of A;1} (3.9) 

as the "important" relations of the basic solutions. 
For a G B and u € Rd let i/(er, u) be the point in Rw such that u(a, u)i = 0, i ^ 

er and (^(<r, u))^ = A~!u. We associate with each u a function Xu '■ Rw —>■ 0,1 
defined such that 

Xu^ = { 0   otherwise  " (3"10) 

It should be clear that 
vertices(Pu) = {^(cr, u)    a e B,   Xu(r) = 1 for all rows r of A"1 j. 

Lemma 6IfPu and Pv are pointed and bounded and \u = Xv then Pu + Pv = 
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Proof: If Pu or Pv is empty then they both must be empty and the theorem is true. 
Because Pu and Pv are both pointed and bounded we know that Pu+V is pointed 
and bounded. Then, since we only need to show Pu+V C Pu + Pv, it is sufficient 
to show if z is a vertex of Pu+V then there exists x € Pu and y G Pv such that 
2 = x + y. It is easy to see that Xu+v = Xu(— Xv) because r-(u + v) = r-u + r-v 
and sign(r • v) = sign(r • u) by assumption. So we find a a e. B such that 
u(a, u + v) = z, and we know that x = v{p, u) G Pu and y = I/(<T, u) G P„. d 

Corollary 1 77zere exists a set of full dimensional cones C\, C2 • • • Cr in Rd with 
the positive orthant covered by [fi=l d such that ifu,v G Cj then Pu + Pv = Pu+v 

andr<d(<p). 

Proof: We see that the linear relations in R divide the Kd space of right hand sides 
into pieces where Minkowski addition of polytopes and vector addition of right 
hand sides operate identically. \B\ < Q, |Ä| < d\B\ < d(f). It is a well known 

fact that k hyperplanes can split Rd into at most 

regions. We have k < dhj so we will have at most 

'd®) < d{<^ 
i=o \   %   )        \   d 

full dimensional cones. □ 
We will use X to denote the set of full dimensional cones (often called a "fan" 

when extended to include all lower dimensional cones). For m by n contingency 
tables we have d = m + n — 1 (one of the row totals is dependent on the other 
row and column totals) and w = mn. We then have the easy upper bound of 
(mn)(m+n)2 cones. We have completed the geometric preliminaries and, after a 
couple lemmas about polynomial arithmetic, are ready to prove the main theorem. 
We now demonstrate that the counting function is a low degree polynomial when 
restricted to any cone C G Z. 

Lemma 7 Suppose p: Qk -> Q is a rational polynomial of degree s in x\, ■ ■ ■, Xk 
M is a d x k rational matrix of rank d and Va; > 0 integral, Vy integral such 
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that My = 0 and x + y > 0 we have p(x) = p(x + y) then there is a unique 
rational polynomial p of degree s such that the following diagram commutes: 

Qk x  Qd ~ Qk/M 

Proof: First we prove Va;,y My = 0 —y p(x) = p(x + y). We relax the 
sign conditions on x and x + y and the integrality of x. Suppose y € Zk is 
such that Vi£^>0 A i + t/>0 ->■ j7(:r) = p(:r + y). Pick 6 such 
& + y > 0 and define pi(x) = p(x + b) and #2(2) = p(% + b + y). We see 
that Va; G Zk > 0 pi(a;) = #2(0:) which is enough to establish that they are 
identical polynomials. Thus we have if y is integral such that My — 0 then 
Va; p(x) = p(x + y). Now pick any y £ Qk such that My = 0. Define 
Pi{j) = p(x + jy). p3 is a degree 5 polynomial in j and we can easily find s + 1 
values of j, ji,J2 • • -jd+i, such that j,-y is integral. We have Pi(ji) is constant at 
these points and therefore is equal to the constant p(x) everywhere. In particular 
p~(x)=p3(0) =p3(l)=p(x). 

It is clear that there is a unique functionp: Qd —v Q that completes the diagram, 
so it remains only to show that p is a rational polynomial of degree no more than 
s. Pick /«■;, • • •, Ud linearly independent columns of M and let L = (l^, • • •, /,-d) 
then we see Vu € Qd p(v) = p(jL_1u). □ 

We now state, without proof, an important result in the geometry of numbers 
(see [34] pp. 135-140). 

Theorem 7 (McMullen) If Pi, P2, ■ • • Pk are integral polytopes in Rs then for 
non-negative \ £ Zk then jj \J2i=i ^iPi) is a polynomial in \\, A2, • • • A^ of total 
degree no more than s. 

Theorem 8 If A is totally unimodular then for each C G S there exists pc a 
polynomial of degree no more than w — d in v\ ■ ■ ■ Vd such that Vt> € C C\ Zd the 
number of integer points in Pv is equal to pc(v). 
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Proof: C is a full dimensional rational convex polyhedral cone, so by Gordon's 
Lemma or the Hilbert Basis Theorem [29] (pp. 11 -12) we know that the semigroup 
of integer vectors in C is finitely generated, say with generators c1, • • •, ck e C 
Because A is totally unimodular we know from [34] (pp. 135-140) there is a 
polynomial pc of degree w — din variables x\-■-Xk such that if v € Zd, x G Zk 

and v = Ef=i xic* (xi > °) men me number of lattice points in Pv is equal to 
pc(x). If Eii Bt-c*' = E*=i V^ men we must have Pc(x) = Pc{y) and we see 
that we meet the conditions of lemma 7. with the polynomial pc and matrix 
M = (c1, • • •, ck). Thus there is a polynomial pc of degree no more than w - d in 
variables vuv2---vd such thatpc(u) = |t(Pv) for all v <E C. □ 

For contingency tables we have A is the (m + n - 1) x (mn) matrix where 

_ /   &-l,LC7-l)/mJ * ^ m 

H-m,j-n[(j-l)/n\ 
h3     ^  ^_m.,--nif,-n/ni   otherwise 

A is totally unimodular because its rows are split into two classes (i < m and 
i > m) such that each column has exactly one entry from each class (page 276 of 
[46] ). The above theorems imply that for m and n fixed we can pre-compute the 
complete fan S and for each cone CeZ pre-compute the enumeration polynomial 
pc. This means that for fixed m and n that the counting problem for contingency 
tables can be solved in polynomial time. 

Direct formulae for 2 x n and 3 x n contingency tables were given by Brad 
Mann [18]. While these formula are exponentially large in n it has been noticed 
that they have fewer terms than the a dense polynomial for a cone would have 
(Mann's 3xn formula has (2n)2 = 4" terms where the 3 x n polynomial could, if 
dense, have QjO x 0((6.75)n) terms). It should be noticed that the polynomial 
techniques given above can, without modification, handle contingency tables with 
censored entries (just leave out columns of A). 

3.5    Counting tables with structural constraints. 

A table with a structural constraint is a matrix X that has, in addition to the 
constraints mentioned in earlier sections, constraints of the form X;j = v,Xitj < v 
or Xij > v for various i,j. It is easy to see (by modifying r,- and CJ) that it would 
be sufficient to know how to count tables with constraints of the form Xij = 0 
efficiently.  This is done by eliminating these constraints one by one using the 
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relationship: 

l(r;c:Xitj = (),•••) = l(r;c: ■ • -)-|t(n, • ■ • ,»*.—1,- • -rm;cu ■ ■ ■ ,c,—1, • • • cn : • 
(3.11) 

(when r-j, Cj > 0). One could also perform directly the same cone decomposition 
that works for tables without structural constraints- but this would require more 
storage. 

It is clear that the number mxn table with arbitrary structural constraints can 
be counted in about the same amount of time asmxn tables (if extra oracles are 
produced) or in time no more than 2mn times the time to count one n x m table 
using just one counting oracle. 

3.6   Assigning a manageable order to tables. 

If instead of counting one wishes to explicitly enumerate contingency tables it is 
useful to define a total order on tables. This order is also very useful in constructing 
a contingency table sampling scheme from a counting oracle. 

Let T(n, • • • rm; c\, • • • cn) = T(r; c) be the set of m by n non-negative integer 
matrices X such that Vi Ej=i Xitj = n and Vj ££Li Xitj = Cj. We assign a 
linear order to this set. The order we have been working with is the "lex" order 
defined VX, Y € T(r; c) 

/3a,bl<a<m,   \<b<n Xafi   >   Ya,b ^ 
(X>Y)^ A      Vj > b Xaj   =   Ya,j 

\ A   Vi > aVj Xij   =   Yitj ) 
(3.12) 

With some care we can step through all the tables in T(r; c) efficiently. We 
appeal to a routine called "backfill". When X is a m by n matrix and a, b are 
integers backf ill(X, a, 6, r, c) returns the lex least non-negative integral table 
Y obeying margins r, c such that Yitj = Xitj for alii > a and if 1 < a <m then 
Ya,j = Xaj for all j > b. If there are no such tables backfill returns 1. 

backfill works the following simple observation. Let T(r;c : Xmj, = 
vi,---Xmijk = vk) be the set of tables X G T(r;c) such that Xmj, = 
vi,-"Xm,jk = vk 

Lemma 8 T(r;c : Xmj, = vu---Xmijk = vk) = 0 iffT(r;c : Xm>h = 
vh ■ ■ ■ XmJk = vk,Xmijk+} = vk+i) = 0 where all the ji (t = 1 • • • k + 1) 
are distinct and Vk+\ — max(0, mm(cjk+i, rm — £i=1 u4-)). 
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Proof: Clearly there is only one direction to prove (as adding a constraint can not 
make an infeasible system feasible). So assume T(r; c : Xmj} =vu--- Xmjk = 
vk) ± 0 and let X G T(r; c; Xm,h =vu--- Xm,jk = vk) be a table with maximal 
Xmjk+r It is clear that Xm,jk+1 < vk+l. lfXm,jk+l < vk+l then there are a, b such 
that XaJk+l > 0 and Xm,b > 0 and 6 distinct from all j and we could build a new 
table by increasing XnJk+i and Xa,b by 1 and decreasing XaJk+l and Xm,h by 1. 
Thus, since Xm jk+] was maximal, have a feasible table with Xm,jk+l = vk+i- ° 

So backfill can operate by filling in the highest index row first (the most 
significant entries fall in this row) and trying to put as much mass as possible in 
the least significant (left most) positions in the row (using lemma 8). If no sums 
are violated then the table created is the lex least matching the specified partial 
table otherwise there are no such tables (and backfill should return 1). 

One can efficiently step through all the tables in T(r;c) by calling 
backfill(0,m + l,0,r,c) to get the lex-first table Yx. To proceed to the 
next table one sets (a, 6) to the least significant entry (1,1), sets Y to be the current 
table with the (a, 6)th entry incremented by 1 and calls backf ill(Y, a, b, r, c) 
and determines if the returned table is feasible. If the table is infeasible (a, b) 
is advances to the next significant entry, which is increased by 1, and the call is 
repeated. The first legal table returned is the next table in our lexicographic order. 
This method imitates the propagation of carries found in counting, so even though 
a simple analysis indicates that it could take nm|J(T(r; c)) fill in attempts to run 
through all ft(r(r;c)) tables it is easy to see (for tables where r and c have all 
largish entries) this method actually lists all the tables using only 0(ft(T(r; c))) 

calls to backfill. 

3.7    Divide and conquer. 
Let Xi denote the ith row of a matrix X.   The basic method we abusing to 
count m by n tables (m > n) is as follows: let k = [m/2\ and qx = £,-=i r< and 

qi = E£U+i ri we then notice that 

i(T(ru-rn;cu-en))= £ ^(n,• • •rfc;X1))xÜ(T(rfc+1, • • • rm X )). 

The idea is simple: we can split each table into two independent set of rows 
if we know how much each column sums to in each set of rows. Thus if we sum 
over all ways the columns can split their totals between these sets (the set of such 
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splits is equivalent to a set of 2 x n tables) then we can multiply the number of 
ways to fill in the top and bottom portions- allowing us to count much faster than 
explicit enumeration. 

This formula can be applied recursively and we can stop the recursion at the 
base cases where m or n is equal to one and the answer is one. This method is 
much faster than explicitly enumerating all of the tables (in fact it was able to 
calculate the number of tables consistent with Snee's hair and eye color margins in 
under 20 minutes on an HP720). This method is not polynomial even for fixed m 
and n. However it is sufficient to solve counting problems to infer the piecewise 
polynomial that is the true counting function. 

Remark: 3 Actually exhaustive enumeration would be sufficient to imply a poly- 
nomial time counting method for fixed m, n as the tables that need to be solved to 
infer the piecewise polynomial depend only on m and n and not on the margins 
of any particular table one wishes to know the count of This would, of course, 
be prohibitive in practice so it is desirable to develop the divide and conquer 
technique. 

3.8   Inferring the piecewise polynomial. 

At this point we have an effective scheme for identifying the regions that the 
counting function is a well behaved on. All the remains is to infer the polynomial 
for each piece. There are some results in commutative algebra that relate the 
polynomials to "Hubert Series" and "Todd Classes", but these structures encode a 
lot of information and are in themselves often hard to compute. The strategy taken 
here is to assume access to a counting oracle (in this case simulated by the divide 
and conquer counter) and then recover the desired polynomial by interpolating the 
values known in a region. 

3.8.1    Lagrange interpolation 

The first interpolation method is not too sophisticated. We find a point b in the 
cone we are working with such that b + sE* (s is the degree of the polynomial) 
is in the cone for all i. We know such a point must exist because the cone we are 
using is pointed and full dimensional (and therefore contains arbitrarily big balls 
as we move away from the origin). We then count (by divide and conquer) all 
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the tables corresponding to any set of margins found in the set of points x e Zd 

(d = r + c—l,w = rc,s = (r-l)(c— 1))suchthatx > 6andl -(x-b) < s. The 
counts at these points are used to determine the polynomial by using "Lagrange 
interpolation." For b,x e Zd and s e Z such that x > b and 1 • (x - b) < s 
the Lagrange polynomial kiXtS is the unique degree s polynomial in variables 
v\ ■ ■ ■ vd such that k,x,s(

x) - * and h,x,s(v) ~ ° for any integral y / x such that 
y £ Zd, y > 6, f • (y — b) < s. hlX,s has a very simple definition 

,     ^-/n^(1 + ^'6"^t;)   X = b (313) 
'xA)" l ö}WA.-i ^ > &*. *i = foiv^ <» 

It is then easy to see that 

pc= Y, F{x)lb,x,s (3.14) 
xeZd, x>b, t-(x-b)<s 

where F(x) is the number of integer points in Px. 
This technique is important because we do not have to explicitly store a linear 

transformation to fit the polynomial coefficients to the known evaluations (in the 
4x4 case there are f1^) = 11440 coefficients to fit which would require a 
11440 x 11440 matrix if the linear transformation were stored explicitly. If each 
entry took just 16 bytes to store this would still represent almost 2 gigabytes of 
storage). Also if extra storage is available this method can change k polynomial 
values into k coefficients in time 0(k2). This can be accomplished by building 
a table of all k Lagrange polynomials in a sort of Gray-code order (where most 
polynomials in the table can determined by dividing a known one by a binomial 
and multiplying by another binomial in 0(k) time). Even though this requires as 
much storage as the direct linear algebra approach it is much faster. The primary 
weakness of this method is that b may be very large and require the solution of 
very difficult counting problems (though the set of problems requiring solution is 
very structured, allowing some savings). 

A nice generalization, which would help with "large 6" problem mentioned 
above, would be to find how to easily compute Lagrange polynomials for an 
arbitrary set S such that S determines pc and S has minimal cardinality. The 
polynomials would then be indexed by x, S and d where lXtS,s would be the unique 
degree s polynomial such that lx,s,s(x) = l and l*,s,. is zero on S \ x. By linear 
algebra we know that such a basis for the space of all degree s (or less) polynomials 
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exists- but it is not clear that it can be competed with limited space and time (i.e. 
with less space than the number of terms squared). 

One conjectured method to efficiently perform this calculation would be to 
hope that all minimal S have structure similar to the simplex we used in the last 
section. The recursive formula given for the Lagrange polynomials depended on 
finding a set of degree 1 polynomials ((i>j -&;),« = • • • d and (1 • v - s - 1 • b)) 
that each zeroed out at least (n+^_1) points in S but have no common zero in S. 
Even for the simple case of d = 2, s = 2 this is not always possible. Take 

S = {(0,0),(1,0),(0,1),(1,1),(3,2),(2,3)}. (3.15) 

We expand elements of S to vectors in R6 by taking (a;, y) -► (1, x, y, xy, x2, y2) 
and write down the 6 x 6 matrix gotten by expanding all of S: 

f 1  oooooi 

M 

1 1 0 0 1 0 
1 0 1 0 0 1 
1 1 1 1 1 1 
1 3 2 6 9 4 
1 2 3 6 4 9 

(3.16) 

We see that det(M) = 32 ^ 0 so S is a minimal basis of the kind we wanted. But 
no (d+s~l) = Q) = 3 points in S are collinear- so there is no way to build the 
Lagrange polynomials up from degree 1 polynomials as before. 

3.8.2   An improvement 

A simple improvement is to notice that if M : Rrf -> Rd is a full rank linear 
transformation and p : Rd -¥ R is a rational polynomial of degree no more than s 
then p defined such that p[x) = p{M~lx) is also a rational polynomial of degree 
no more than s. For each cone C G E we let Mc be the d x d matrix whose 
columns are the first d integral vectors in C such that M is full rank (vectors 
ordered in graded lex order). Then we see if S = {x € Zd | x > 0 , f • x < s } 
then Afc(5) is a set of points that determine the interpolation polynomial for the 
cone C and p can be inferred by the above naive method. The advantage is that 
this set of problems may be much smaller (and therefore easier) that the set of 
problems that the original interpolation method would require. Finding a basis for 
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Zd in the given cone is of course a hard problem, but it is a problem in Zd not 
in the much larger space of coefficients and evaluations. In practice d is so much 
smaller than the number of coefficients needed that the time needed to search for 
the small basis by brute force has been negligible compared to any of the other 
steps in the algorithm. It would be interesting to use more subtle techniques such 
as computing a Hubert basis for the cone and examining it for an acceptable short 

basis. 

3.9    Sampling from counting. 

For many statistical tests it is important to be able to generate a table uniformly 
at random that obeys given row and column sums. It is well know [38] that 
sampling and counting are intimately related. For this problem the relationship 
can be exposed by combining the fixed dimensional counter and the "lex" ordering 
introduced here for brute force enumeration. The method is as follows. 

Suppose we want to generate a table, X, uniformly at random obeying rows 
sums ri, r2, • • ■ rm and column sums cu c2, • • • cn where m, n are fixed. We will 
assume that we have pre-computed a representation of the piecewise polynomial 
counting function, so we can count tables at will. First we compute N, the total 
number of tables obeying r, c. We generate a integer k in the set {1,2, • • • N} 
uniformly at random. We are going to return the lex kth. table as our uniform 
random sample. First we look at the most significant entry of the table: Xmtn. 
If for an integer b such that more than k tables obeyed r, c and the structural 
constraint Xm,n < b then we would know that more than the lex kth table must 
have Xmin < b. Similarly we know that if fewer that k tables obeyed r, c and 
Xm,n < b then the lex A;th table must have Xm,n > b. Thus we can, using binary 
search on b, find in time log2(min(rm, cn)) find the true value of Xm,n for the lex 
&'th table. We then add Xm,n = b as a structural constraint and use the same 
technique to find the correct value for the next most significant entry. This process 
is repeated until the entire table is constrained and then X is the lex fcth table as 
desired. This method can generate a true uniform sample by solving no more than 
(m - l)(n - l)log2(min(rm,cn)) structural counting problems. We can either 
assume that we had the (m- l)(n-1) different types of counting polynomials pre- 
computed, or by using the formula 3.11 judiciously and converting each structural 
problem into no more that 2n_1 counting problems (notice that we apply structural 
constraints to only one row at a time until the row is completely constrained). 
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3.10   4x4 results. 

We have solved the m = n = 4 case. This case splits into (after some symmetries 
are removed) 3694 cones such that tf4,4 restricts to a degree 9 polynomial in 7 
variables in each cone. This means each polynomial is determined by 11440 
coefficients so can be interpolated from 11440 sufficiently general evaluations. 
Each of the 3694 tasks seems to represent about 3 hours of pmax cpu time, so the 
total job represents about 1.5 pmax cpu years. This task was completed in just 
over 6 weeks using Peter Stout's WAX system [50] which effectively simulates a 
coarse-grain parallel supercomputer (employing the numerous idle workstations 

at CMU). 
This decomposition is able to count the number of tables compatible with the 

hair/eye color table 1.1 in 30 seconds.3 

3.10.1    Snee's table 

This table 1.1 has been our main test case. It can be counted in under 20 minutes 
using the divide and conquer technique. The divide and conquer counter has been 
augmented to generate a batch of uniform random samples while counting. This is 
accomplished by generating a large set uniform random integers from the range 1 
to the total number of tables compatible with the margins. The divide and conquer 
procedure is then run with the batch being divided into the appropriate divisions 
until the tables are completely filled out. The indices used here are not in the lex 
order used in other sections but in an arbitrary, but constant, order determined by 
the coding of the divide and conquer algorithm. This method when dealing with 
batches of 10000 tables can generate about 20 tables a second. The pre-computed 
4x4 solution can count Snee's tables in about 30 seconds. And this method can 
generate a uniform random sample in a couple of minutes. The generator can be 
converted into a batch process (so many tables share the first few hard counting 
problems) to generate uniform random tables in a batch. The savings would come 
from many tables sharing the harder early counting problems. 

The results to date on this table, which clearly has been over studied, are that 
best estimate of the chi-square significance of the table is 15.5% with a 3 standard 
deviation confidence interval of ±.15. 

This agrees well with results from two Markov chains (described later) one 

3 All CPU times given in this section are HP720 CPU seconds unless otherwise noted. 
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based on a natural "King's move" walk and one based on the newer "ball move" 
walk. These chains returned estimates of 15.6 (±3 std dev interval 15.2 •• • 15.9) 
and 15.6 (±3 std dev interval 14.1 - - -17.1) respectively. The second confidence 
interval is much wider as the chain ran for a much shorter time. 

The confidence intervals would not have been possible without the proof of 
convergence. One could design and run one of these chains without the conver- 
gence proof. However for a given length run one would not be able to estimate how 
many truly random samples the set of samples drawn for the chain was equivalent 
to. So there would be no way to draw confidence intervals around the estimate. 
Thus one could be in the unhappy circumstance of having two chains in wild 
disagreement and be able to draw any conclusions. 

3.11    5x4. 

The 5x4 problem is large enough to be considered impractical. However for any 
one table one can identify a cone its right hand side lies in and infer the polynomial 
for this cone alone. In fact we have found significant savings in not inferring the 
true polynomial by computing Y.f{x)lx (where f(x) is the true value and lx is the 
Lagrange polynomial such that lx(x) = 1 and lx{y) = 0 for all other points in the 
interpolations set) but computing the count for the desired table, z, by computing 
f(z) — Y,f{x)lx(z)- lx{z) is an integer (not a polynomial) and can be computed 
much quicker than lx can and the process requires almost no storage. 

This method was used to determine the number of tables compatible with the 
margins [ 182, 778, 3635, 9558, 11110 ] and [ 3046, 5173, 6116, 10928 ] is 
23196436596128897574829611531938753 in 8 days on an HP720 workstation. 
While this may not seem quick it should be pointed out that computing the sum 
mentioned in the previously paragraph is "embarrassingly parallel" (most of the 
time would be spent in computing the terms of the sum without any need for 
communication) so this calculation could be done quickly on a parallel computer. 

3.12    ra x 2 and m x 3. 

Brad Mann has developed effective formulas for both the ra x 2 and mx3 case. 
Mann's results are inclusion/exclusion formulas over all partitions of ra. These 
formulas have a number of terms comparable to the polynomials developed here for 
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exact computation but have the distinct advantage of involving no pre-computation 
and use very little space. 

3.13   Asymptotic performance of estimates. 

Asymptotic behavior of the contingency table counting function can be easily read 
off our chamber decomposition. This has made possible an interesting comparison 
of several estimation schemes in the literature. 

The first estimate is from [44] and is intended for sparse tables. Let T = 
YH=\ 

ri — 2Dj=i ci m& assume the row sums are all less than log(min(m, n))1/4-6 

then 
i(r;c) ~ El(r;c) =       f'      <■££,,■ G0(?) (3.17) 

11 ri • 1 i cj ■ 
as m, n —>■ oo. When the sparsity condition is not met this estimate tends to be off 
by an exponential factor (and is not used for the type of contingency tables arising 
in statistics). 

The next estimate is from [30] and is intended for non-sparse tables (with a 
large number of large rows). The idea is to take the number of tables obeying 
the row- constraints and to multiply it by an estimate of the odds of satisfying the 
column constraints. 

2          (n-l)£rt(r; + n) 
a     =    —   

(n + 1) r 

|(r;e)   ~   E2(r; c) = ^'^ (%-*.) JJ (' T- 1    ) ™ 

And the final estimate is from Diaconis and Efron [16]. This estimate is based 
on a volume times density of lattice argument- with the novel innovation that 
the volume is purposefully overestimated to compensate for some corner effects 
missed in this type of analysis. Because of this the Diaconis/Efron technique 
estimate is much harder to analyze and not much is know about it. 

1 
w   - 

1 + mn/2T 
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_ 1 — to      wr{ 

m 1 

k   = 

WCj 

n T 
n + 1 1 

'2T + mn\{m-l){n-l) 

T(nk) 
T(n)mT(k)n (3.19) 

The first asymptotic trajectory we examine is counting the number of tables 
with row sums [t,kt, kt] and column sums [t,kt, kt] where Hs a positive integer. 
By examining the complete 3 by 3 solution it is clear that the number of tables 
obeying these margins is 

which is asymptoticly (| - Jj )t4 as t ->■ oo and k is held constant. A little work 
shows the asymptotic behavior of the estimates on this trajectory is as follows. 

"*<*» * wS' i 
(3-20) 

pn   w     3V3k2  24 
tjl   ~    47r(2P + l)e^-D2/^2+1) K       } 

9Tf# 1.10/3      fc2     ~?+34/l)l^) r/3+16fc+14fc2x 
ß3     x     2 '+        k (2+4k? W     ^(      H2*      W   (322) 

8d + 2fc)2r(^giM)3 

Estimate 2? 1 is not really worth discussing (it was never intended for this case). 
Estimate E2 tends to overestimate the count by a factor of about k and £3 tends to 
underestimate by a factor of A;1/3. Figure 3.1 plots the behavior of these asymptotic 
expressions as a function of A;. The graph is the value of equations 3.21 and 3.22 
and the true asymptotic behavior (as t ->■ oo), all divided by t4, as functions of A;. 
Figure 3.2 shows the same trend with the true count rescaled to be 1. 
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Figure 3.1: Asymptotic behavior of counting estimates. 
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Figure 3.2: Rescaled asymptotic behavior of counting estimates. 
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Another interesting trajectory is [t,t2,t3];[t,t2,t2]. Along this trajectory 
the number of contingency tables is asymptoticly t5/3, E2 is asymptoticly 
3V3/(4ne4)t6 and E3 is asymptoticly t6/4. 

3.14   Large tables with small margins. 

The divide and conquer counter (when combined with Mann's formulas as base 
cases) is able to exactly tables from the literature. 

For example, Mehta and Patel [42], in the course of performing significance 
tests, estimate counts for the following tables (using Gail/Mantel's method [30]). 

Problem 1: 

Total 

Total 
1110   0 
4   4   4   4   4 

0 
4 

1    3    3 
4    1    1 

10 
30 

5    5    5    4   4 4 5    4   4 40 

Problem 2: 

Total 
2 0 1 2 6 11 
1 3 1 1 1 7 
1 0 3 1 0 5 
1 2 1 2 0 6 

Total 5 5 6 6 7 29 

Problem 3: 

Total 
2 0 1 2 6 5 16 
1 3 1 1 1 2 9 
1 0 3 1 0 0 5 
1 2 1 2 0 0 6 

Total 5 5 6 6 7 7 36 

Problem 4: 

Total 

Total 
1 1 1 0 0 0 1 2 4 10 
4 4 4 5 5 5 6 5 0 38 
1 1 1 0 0 0 1 2 4 10 
6 6 6 5 5 5 8 9 8 58 
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Problem 5: 

Total 

Total 
1 2 2 1 1 0 7 
2 0 0 2 3 0 7 
0 1 1 1 2 7 12 
1 1 2 0 0 0 4 
0 1 1 1 1 0 4 
4 5 6 5 7 7 34 

Problem 6: 

1 2 2 1 1 0 1 8 
2 0 0 2 3 0 0 7 
0 1 1 1 2 7 3 15 
1 1 2 0 0 0 1 5 
0 1 1 1 1 0 0 4 

Total 4 5 6 5 7 7 5 39 

Our results working with these tables are as follows: 

Problem True count reported est Gail/Mantel ests Diaconis/Efron ests 
1 35353 40500 34534,73397 37992,40169 
2 3187528 1.1 *106 3.01 *106, 3.84 *106 3.30*106,3.32*106 

3 97080796 68 * 106 125 * 106,68 * 106 110 * 106, 112 * 106 

4 1326849651 624 *106 1963 * 106, 519* 106 1615* 106, 1757* 106 

5 2159651513 1.6* 109 2.5 *109, 1.7* 109 2.6*109,2.6*109 

6 108712356901 64*109 132 * 109, 64 * 109 144 * 109, 149 * 109 

Table 3.1: Estimates from the literature. 

Both the Gail/Mantel and Diaconis/Efron estimate are asymmetric (can give 
different estimated counts for a table and its transpose), so we have reported both 
estimates (with the better one first). Somebody actually using these estimates 
would not be able to, in all cases, identify the best of the two estimates. The 
differences between Mehta/Patel's reported values of the Gail/Mantel estimate 
and values given in lines 1,2 and 4 of this table are disturbing (the others are 
insignificant). 
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3.15    Magic squares. 

As an exercise we were able to rederive all the known magic square Ehrhart 
polynomials. pn(x) is defined as the number of n x n non-negative integer 
matrices such that every row and every column adds up to a;. p\ • • • p^ are: 

pi(x)   =   1 

p2(x)   =    1 + x 
9x     15 a;2  3 x3 x4 

*(*) = 1 + T + —+ ^ + y 
65x  379a;2  35117a;3  43a;4  1109a;5  2a;6  19a;7 

M*)   =   1 + l8- + -63- + -^67Ö- + ^b" + ^4Ö- + T- + l35" + 

11a;8  11a;9 
+ 

630  11340 
725 a;  6229735 x2     3028287247 a;3  438177965089 a;4  664118435 a;5 

P5W   ~      + 144 + 494208 + 145297152 + 17435658240 + 28740096 + 

3812839477 a;6  196563587 x7     3541860299 a;8  55426325 a;9  125188639 a; 
+  n    +  „„„*    + ~„~n~n,   + 229920768    20901888    836075520    36578304    292626432 

984101a;11  72750523 a;12  112655 a;13  1008757 a;14   188723 a;15 

10450944 + 4598415360 + 57480192 + 5977939968 + 20922789888 + 

188723 a;16 

836911595520 
3899 a;  46584105377 a;2  12246206617138789 a;3  382955230861099213 

P6(x)     =     l + ^K7^+      ni,i*mc^      +       ^Amtowecnnn       + 600    2141691552    247365374256000     4517106834240000 
155498465793777230567 a;5  14226886368398551a;6  243245111626317349 x 

1355132050272000000  +  112634352230400  +  2111894104320000 
232132948167689 a;8  253578194011961479 a;9  736591080322991 a;10 

2634721689600  +  4446092851200000  +  23433524674560  + 

16265048187290869 a;11  2000221303490489 a;12  570713692223620411a;13 

1098446469120000 +  334764638208000 + 276180826521600000 + 

8346012436199 a;14  1424745952102609 a:15  77984295979769 a;16 

13638559334400 + 9206027550720000 + 2343352467456000 + 

1062348478211833 a;17  18674864899 a;18  2462417656967 a;19 

175751435059200000 + 20324995891200 + 21341245685760000 + 
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141248912237 a;20    853529939221 xn 4394656999 a;22 

12014330904576000  901074817843200000  75690284698828800 

158824242127 a;23       9700106723 a;24 

62444484876533760000 + 136783157348597760000 

9700106723 x25 

10258736801144832000000 

3.16   Availability of software. 

The url http: //mixing. sp. cs . emu. edu/ provides an online demonstra- 
tion of this work over the World Wide Web. 

3.17    Problem hardness. 
The problem of determining the number of contingency tables consistent with row 
and column totals is quite difficult. Martin Dyer and Ravi Kannan[24] established 
the following. 

Theorem 9 Determining the number of2xn non-negative integer matrices X 
such that £i=i Xitj = n (i = 1,2) and Xhj + X2ij = Cj (j = 1 ■ ■ ■ n) is fP- 
complete. 

Proof: In [22] it is shown that given the positive integers a\, a2, • • •, an-i, b it is 
jjP-hard to compute the n - 1 dimensional volume of the polytope defined by 

Ep1 ajVj < b 
0<&<1 (j = l,2,.--n-l) • 

Thus if an = b it is jJP-hard to compute the n - 1 dimensional volume 

Ei=i ajVj = h 
0<2/i<l  (j = l,2,.--n) • 

Substituting xhj = ajyj, x2,j = a,-(l - y,) we encode this as a small set of 
contingency table problems. We identify Cj = a,j (j = l,---n), ,r\ = b 
and r2 = E^i1 «i- We then use the fact [34] that for integer k the function 
f(k) = %(kr, kc) is a degree n - 1 polynomial in k and the coefficient of A;™-1 is 
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the desired volume. Thus if we could solve the contingency table counting problem 
for k = 0,1,2 • • • n — 1 we could infer all of the coefficients of /, including the 
highest one. It is easy to see that the interpolation can be performed using rational 
numbers that require no more than 0(n(log(ri + ri) + n)) bits to represent. □ 

3.18    Near uniform generation. 

Consider m > 1 row by n > 1 column contingency tables obeying row and 
column sums (r2-, Cj > 0 and integer) such that r;+i > r;   (i = 1 • • • m — 1) and 
Cj+i >CJ  (j = \---n- 1). 

LetT = Er=i^ = £"=iCi, 

' 
(l)          Efc.^i < C

J 

(2)          £ ■=/ Xj < Ti 
X e R(m-l)(n-l) (3)  E™!1 £?=/**',i > T 

(4)                 xiti > 0 

i = i- • • n 
i = i- ■ m 

i = i- ■ • n 

i = 1- ■ m 

K = 

There is an obvious 1 — 1 correspondence between integral points in K and 
contingency tables obeying the given row and column sums (fill in last/row column 
using the linear dependencies). For u € Z(m_1)(n_1) let 

C(u) = lx e R(»»-I)(»-I) 

and 
J= U C(u) 

U6Z(n»-i)(»-i)nÄ" 

Now we wish to find a convex body K' such that J C Ä"' and Vo^/^') is not too 
much bigger than Vol( K). If we had such a body then to generate contingency table 
(from near uniform distribution) we would use standard techniques to generate a 
near uniform point from K' and rejection sample until we find a point in J and 
round to an integral vector. 

Define 

Y- ■ = 
riCj + 

min(r;,Cj) 
T       2max(n2 — n,m2 — m)' 

78 



Lemma 9 The coordinate aligned cube ofQ,^) diameter 2max7n2-nTO2-ro) centered 
at Y is contained in K. 

Proof: It suffices to check inequalities (1) and (2) with X = Y+ and inequalities 
(3) and (4) with X = Y~ where Y± = YhJ + 2maxg^g.m) and Yf. = Yid - 

min(r;,cj) /_ rjcj \ 
2max(n2—n,m2— m) V X  /* 

1. 

"^ (rjcj_ min(^,Cj) \ ^-(T - r„)  (  c,-(m-l) 

3. 

D 

f^[\T      max(n2 — n,m2 — m)) 

< 

T 
i — m 

C3 (m — 1) + 
9(m- 
m2 - 

-1) 
m - m 

Cj 

^ />,-<:,• min(r,-,Cj) \ r,-(r - c„)  , r;(n-l) 
^ \ T       max(n2 — n,m2 — m) 

< 

T re2 — re 

r (ra- 1) + 
r;(re - 

re2 - 

-1) 
re - re 

r, 

—    T —        —       J_ rmCn 

>   -L     rm     cn. 

^>0 

Corollary 2 Ifmin(ri,ci) > 2A(re - l)(ra - l)max(ra2 — n,m2 - m) then the 

dilation K' ofK about Y by (1 + X(n-i)(m-i)) contains J and ^yD < ellx. 
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Proof: If min(ri, ci) > 2Anramax(n2 — n, ra2 — m) then by the last lemma we 
know that a coordinate aligned cube of size A(n — l)(ra — 1) centered at Y is 
contained in K. Consider any c € R(TO-1)("-1) and b real such that c • (x — Y) < 
b Vx € /^. Take an arbitrary 2 such that c • (z — F) < 6 and notice that 
C(z) is contained in the half space c • (x — Y) < (1 + l/(A(ra — l)(m — 1))). 
From this it is easy to see that K' contains J. The volume of K' is precisely 
(1 + l/(A(n- l)(m- l)))(n-1)(m-1)Vol(7i') which is no more than e^Vo^Ä"). 
D 

Let l(K) denote the number of points in K with integer coordinates. 

Corollary 3 Ifmm(ri,c\) > 2Anmmax(n2 — n,m2 — m) then 

e~1/A Vol(ÜT) < t(K) < el'xVo\{K). 

Proof: The right inequality follows immediately from the last corollary. Consider 
any c G R(m_1)(n_1) and b real such that c • (a; - Y) < b \/x G K. Take an arbitrary 
z such that c-(z-Y) < b notice that C (z) is in the complement of the half space 
c • (z - Y) < (1 - l/(A(n - l)(m - 1))). □ 

3.19   Counting from generation. 

The corollaries of the previous section extend into an approximate counting 
scheme, if we had a method of approximating the ratio of the number of ta- 
bles with row/column totals (r,c) (r8- > nmmax(n2 — n,m2 — ra), r,- > 
nra max(n2 — n, ra2 — ra) i = 1 • • • ra, j = 1 • • • n) to the number of tables 
with row/column totals (r',d) 

r'; = 
T{ + A   i = a 
r; otherwise 

d      \ cj + A  j = b 
i     1  Cj otherwise 

for arbitrary a, b and some non-negligible A. 
Suppose we wish to count to within a relative error of 1 + e (0 < e < 1), let 

N = 20nm max(n by the above arguments the number of integer tables 

is between e_e/10Vol and ee/10Vol.   This means we certainly have the volume 
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of this body approximates the number of lattice points with a relative error of 
no more than 1 + e/3. volume of a table with all row sums and column sums 
> N approximates the number of lattice points to within a relative error of 1 + |. 
All that remains would be to use standard technique (as in Lovasz/Simonovits 
or Kannan/Lovasz/Simonovits) to calculate the volume of this body to sufficient 
accuracy and approximate the ratios of lattice points as outline above. 

If we could boost all r* and Cj up to at least iV in a polynomial number of 
stages and compute the ratios of all these stages so that the product of these ratios 
has a relative error of no more than 1 + f then we would have a good estimate 
of the number of tables obeying the original row and column sums. We will 
show that we can take A = min( ^, ^ when trying to boost a row and guarantee 
that the ratio of contingency tables obeying the original row/column totals to the 
boosted row/column totals is in the range [, ^J   n^, 1].   This is enough to 

allow us to approximately count using no more than 0 (nm ln(max\i'
rm')) stages 

(for m rows double each row in about n stages, raise row to max(iV, rm) in about 
m(max(JV'r"0) doublings) each being computed to a relative error no finer than 

Q ( -—,„    ,Ni,N
£    , ,max(N,rm)s) yielding an approximation scheme that runs in 

l ((m-l)(n-l)+l)nmln(—\^     ') ) 

time polynomial in i, n, m. 

boosting a table To compute the ratio of tables obeying (r, c) to (r', c') (as 
defined before) we identify tables X obeying (r, c) with X' (equals X with Xa,b 
increased by A) this defines 1-1 map from tables obeying (r, c) to a subset of the 
tables obeying (r', d). So we generate a table X1 from the uniform distribution 
that obeys the (r', c') and check if we are in the subset corresponding to the (r, c) 
tables (ie. is X' h > A?). All that remains is to show that this subset of all (r', c') 
tables is not too small. 

Theorem 10 IfX is uniform random variable corresponding to a table obeying 
the row/column sums (r, c) then Xa,b > min(^, ^) at least (TO_1^

1
ra_1)+1 of the 

time. 

Proof: Let A = min( *jf, ^) -We will define a map / that maps all tables obeying 
(r, c) into the set of tables X obeying (r, c) such that Xajh > A. If Xa,b > A let 
f(X) = X otherwise by the pigeonhole principle we see that there exists x, y such 
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that Xaty >   ^   and XXt\, >   ^ . Let i,j be the smallest indices obeying these 
inequalities (i f- a,j ^ 6). And define 

f{X)UlV 

Xu>v + A if u = a and u = 6 
XUiV + A if u = x and u = y 
Xu,v — A if u = £ and u = b 
Xu>v — A if u = a and u = y 
X, „ otherwise 

It is easy to see that / maps at most (ra - l)(n — 1) + 1 tables to any point in its 
range. □ 

a trick to speed it up We can, in some cases, speed up the reduction by avoiding 
the volume computation. Assume n = ra and let K\ denote the polytope corre- 
sponding to T{ = /, CJ = I for all i,j. Notice the polytope K\ is just IK\. Also, 
K\ has only integral vertices because the matrix formed by the left hand side of 
the constraints given in the definition of K is totally unimodular. Thus the theory 
of lattice point enumerators ([34] pp. 135-140) can be brought in and we see that 
a polynomial pi of degree exactly (m - \)(n - 1) passes through the integers 
j(K[) I = 1 • • • oo. So if we knew pi (as a non-uniform piece of information in 
the circuit theory sense or from an oracle) we would not have to boost the table 
until all rows and columns were above N but only until they were equal (in fact we 
could even decrease them all be be min(r i, c\) allowing the more natural reduction 
direction: towards smaller problems). Now by a brute force technique (similar 
to the one developed by the authors of STATEXACT [42]) we have explicitly 
computed pi for 2 x 2, 3 x 3,4 x 4, 5 x 5 and 6x6 tables (which can be used to 
help enumerate any tables with max(n, ra) < 6. 

3.20   Difficulty in generating Fisher Yates. 

Generating Fisher-Yates distributed tables in time polynomial in log(T) (instead 
of polynomial in T) seems to be more difficult. 

The main problem is that the density function varies quite rapidly. It is easy 
to show the density function is log-concave (replace x\ with T(x + \) everywhere 
and notice that V>(1)(z) = ^Hg*))] is non-negative for x > 0 [1] 6.4.10). But if a 
step is taken such that an entry is increased from 0 to d the density function can 
vary by as much as a multiplicative factor of d. 
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In fact the density function can go through an incredible range. Consider a 
n by n table with row/column sums all equal to T/n (assume n2 divides T) and 
consider two fill-ins E where Eij = T/n2 and U where U^i = T/n and J7t-j = 0 
for i / j. 

D(E)   _     (?!)' 
Dili) m- 

^-^T/n+l/2e_T/ 

> 

. n 

n 

^ (j)T/"2+1/2 e-^+n/(12T)y 

n T+n/2 

(^)"2_n (j)n2/2-n/V/(^) 

which grows as nn(T) for large enough fixed n and growing T. 

3.21    Local geometry of Fisher Yates. 

3.21.1    Bounds on variation 

Consider m row by n column contingency tables, with row sum vector r, column 
sum vector c and non-negativity. Take the function F defined over all such tables 
X such that: 

FpO = 5>r(X,-j + l) (3.29) 

We note that for X > 0 that F is strictly convex [32, 8.363 8]. 

Lemma 10 IfX is a legal table and X > 0 then for any A such that X + Ais a 
legal table and X + A > 0 

F(X + A) - F(X) < £ ^ + T,AiMxiJ + !) (3-30> 
*>J      *'•?       «,J 
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Furthermore, if for all i,j Aij/(Xij + 1) > —3/4 then 

F(X + A) - F(X) > £^-3 +T,*iMXiJ + !)• (3-31) 
i,j hi    > jj 

Proof: First define: 

/(*) = F(X + <A) = "£\nT(Xiti + 1 + tAij) 

then by [32, 8.360] 

and [32, 8.363 8] 

/"(*)   =       E    tij^XXij + l+tAij) 

00 1 

= iJS^oAl'£(^+i+^+fc)2     (332) 

Also 

f'(t)  =  f'(0)+ff"(y)dy 
Jo 

=    f/"(y) dy + EA^P^ + 1) (3-33) 

To prove inequality 3.30 assume that X > 0 and X + A > 0. Continuing from 
equation 3.32 

f"{t)   ~   i,M*oAljJ<>    (Xij + tlj + yf 
A?- =    E   -^— 
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Combining with equation 3.33 

A*)   <   [    £     Y   + 1A   dy + ^^MXij + l) 
J0 i,j : AijiLO ^hi "+" y^hJ i,j 

=       £     Ai,i(ln(Xi,J+tAiJ)-ln(Xi,i)) + 

So it is enough to get an upper bound on: 

f     £    (ln(Xi,i+tAiJ)-ln(^,i))AJ-idi 

=       Yl    ((Xu + Aij)ln(Xij + &ij) - 
hi : Ai,i^° 

(Xij + Ahj) - Aij tyXij) - Xij HXij) + Xij) 

hi : k,j& 
Ahi \ =       J2    (Xitj+Aij)\n[l + 

«J:Aj,y#0 V XiJ ■ 

(the free Ajj disappears from that second to last line because Y.i,j ■. A^O &i,j = 0)- 
Continuing with [1, 4.133], ln(l + x) < x for x > -1: 

<       £    (Xhi + Ai,)Ai'J 

hi ■ A;,,^0 Xi,j 

^        A?- =    £   ^ 
To prove inequality 3.31 further assume that At-j/(X;j + 1) > - /4. Again 

from equation 3.32 
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A?- _       y^      f\j  

Combining with equation 3.33 

=       Y.    Ay(ta(X.-,j + l+<*,;)-Inpfij + l)). 

Now it is enough to get a lower bound on: 

/'     £    (Inpfy + 1 + tAij) ~ H*ij + l))AiJ dt 
JO    •  •    A     _tn 

=    E  ((*J +1 + A.-J) M^-J +! + AM) - 

(Xij + l+A^-AijlniXij + l)- 
(Xij + iMXij + y + Xij + i) 

= , E (^ + 1+^)10(1 + 3^) 

(the free A,-j disappears from that second to last line because J2ij ■. A^O A»J = 0)- 
Using ln(l + x) > a/(l + \x) for a; > -3/4. 

A; 

>       E    (^,j + l+Ay)i  ^; 
i,j:Ai,j^0 1 + 3 Jf;,j + 1 

=       E    P^ + l+A,,,^    ^^ 
ij : A; ,■ ^0 A',J + l+A',J 2. 

^i.i + l 

EA. Xjj + 1 + Aj,j 
,J  V i    1     l     A A,,. 

ij : A.^O Xi,j + 1 + Aj,j f 

=    E  *„■ 1 + 
i,i : A;,^0      '    \ Xi,j + ! + &i,3 3 
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A? . 

^2      - jr 

^ A2- 

i,j:Ai,j^05Xi>i +3 

D 

We have the following theorem: 

Theorem 11 IfX is a legal table minimizing equation 3.29 (over all legal tables) 
and X > 0 then for any A such that X + Ais a legal table and X + A > 0 

F(X + A)-F(X)<J2$L (3-34) 

Furthermore, ifforalli,jAiij/(Xiij + 1) > -3/4 then 

F(X + A)-F(X)>^T^ir^ (3-35) 

Proof: It is clear that £;,j A^VK^'J + 1) = 0 in this case and we get the result 
from lemma 10. □ 

3.21.2    Location of the minimum 

Let X be a m by n non-negative matrix obeying row sums r, column sums c and 
T = YHLI 

ri = E"=i ci- Define a m by n matrix, S'(X), as follows: 

» = < 
f +1   *>j > ^ + 1 

-1   Xij<r-f--l (3.36) 
0   otherwise 

We call an m by n matrix A a "non-trivial balanced sub marking" of S(X) if: 

• 3* G [1 • • • m] 3j G [1 • • • n] s.t. Aitj ^ 0 ("non-trivial") 

Vj G [1 • • • n]   Er=i A.-j    =   0  ( } 
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• Vi € [1 • • • m] Vj e [1 • ■ ■ n] (Af(i = S'(X)i,i)V(A4-i = 0) ("sub-marking"). 

Lemma 11 Take X is a m by n non-negative matrix obeying row/column sums 
r,c, T = J2i ri — Jlj cj> A a non-trivial balanced sub marking of S(X) and 
Vi,j ^ > 1. Then 

F(X) > F(X - A). 

Proof: Let e;j = Xij - {^- + A;A Notice that (e,-j < 0) -)• (A,-j < 0) and 
(eij > 0) -» (A8j > 0). Then 

F(X)-F(X-A)   =   ^(lnr(^ + AiJ + eiii + l)- 
*.j 

r8-Cj 
Inr^ + c-j + l 

=       E     In (^ + 6,-„-+ l) - 

E    ln(^ + ^) 

> E    ln(^)-     E     ln(^-l 
i,j:Aij>0       V   J    J       i,j:Aitj<0       V 

> E    l»^)-     E     ln(^ 
=     0. 

D 

Lemma 12 IfS(X) is such that every row and every column has at least one +1 
and at least one —1 then S(X) has a non-trivial balanced sub marking. 

Proof: We can assume (without loss of generality) that S(X)iti = +l,S(X)ij. = 
— 1 and S(X)2,i = — 1. This gets us into the general case used in this proof where 
we have A& the m by n matrix such that 

(Afc)ij 
+1 {i,j) = (1,1) 

(_l)min(i,i)     (1 < i < fc) A (1 < j < Jfc) A (» = J ± I] 
0 otherwise 
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and ((Afe)jj ^ 0) -* ((A^j = S(X)itj).   We are going to use an inductive 
argument on fc. One such pattern (n = m = 5, k = 4) is: 

+1 -1 0 0 0 
-1 0 +1 0 0 

0 +1 0 -1 0 
0 0 -1 0 0 
0 0 0 0 0 

Now if we know, as above, the initial A; by A; segment or S(X) we know (by 
the given) there must be a (-l)fc somewhere in column k. If S(X)k,k = (— )k 

then we see that if (-l)fc is added to the (k,k) position of Ak then we have 
the desired non-trivial balanced sub marking. If S(X)itk = (— )k for some 
i < k - 1 then we see that if we add (-l)fc to the (i,k) position of A*, zero 
out the column a < k such that (Afc);,a = (-l)k and then iteratively zero out all 
columns that have the only non-zero entry for any row then what we have left is 
again the desired non-trivial balanced sub marking. An example of this process is 
(n = m = 5,k = 5,S(X)i,s = -l): 

+10      0   0-1 
-10+10      0 

0   0      0   0      0 
0   0-10+1 
0   0      0   0      0 

So either k = m and we must have a non-trivial balanced sub marking or we 
can assume (by reordering rows) that S(X)k+\,k - (-l)fc- By a similar column 
argument we see that either we have the desired marking or (by reordering columns) 
S(X)k fc+i = (—1 )k. Thus we can say that either we are done or A^+i is such that 
((Ak+^ij + 0) -► ((Ak+l)itj = S(X)ij). □ 

Theorem 12 If X is the m by n non-negative matrix obeying row/column sums 
r, c minimizing equation 3.29 over all such tables and T = YT=\ ri 
then for all i,j: 

ZU* 

\Xi,3 
I ?'C-i' 

< (m + n — 3)max(m — l,rc — 1). 
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Proof: We proceed by induction on m and n. If m or n is less than two then 
the theorem is trivial. For m = n = 2 the theorem follows immediately from 
lemma 11. Assume the theorem is true for all a, b s.t. ((a < m) V (6 < n)) A (1 < 
a<m)A(l<6<n). Suppose every row and every column of X has an entry 
Xij differing from ^ by at least max(ra — 1, n — 1). Then S(X) must satisfy the 
conditions of lemma 12 allowing us to again apply lemma 11. So we assume that 
there is some row or column where every entry is within max(m — 1, n — 1) ofr-^-, 
for discussion assume it is row m. Notice that the m — 1 by n initial submatrix of 
X is the unique matrix minimizing equation 3.29 over all non-negative m — 1 by 
n matrices satisfying row sums r and column sums c, — Xmj. By our inductive 
hypothesis we know that \Xitj - 

ri{cf_*™'j) | < max(m - 2, n - l)(m + n - 4) 
for i = 1 • • • m — 1. We quickly see that for i < m we have \Xij — ^-\ < 

(JT^— + m + n - 4j max(m - 1, n - 1). And for i < m we have fz^ < 1. □ 
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Chapter 4 

Open Problems 

We would like to identify some important open problems in the areas touched on 
in this thesis. For the Markov chains (used in both the optimization chapters and 
contingency table chapters of the thesis) a number of important questions remain 
open. 

4.1 Effective diameter. 

Most of the current upper bounds on the mixing time for Markov chains with 
average step size 8 whose states are contained in a convex body of diameter d 
involve a factor of (d/5)2. It would be a big breakthrough to be able to measure 
both d and 8 in the infinity (or max) metric without introducing factors of n. It 
would also be a big improvement to be able to use the "effective diameter" or the 
expected distance between two points in K instead of d which is the maximum 
distance between any two points in K. Any of these improvements would lead to 
much better bounds for mixing time. 

4.2 Non-stationary processes. 

A method to analyze non-stationary processes would be very useful. This would 
not only allow us to directly prove mixing rates for simulate annealing but would 
allow the development of adaptive algorithms. An adaptive algorithm would start 
with a simple Markov chain that could have a poor mixing rate due to states with 
low local conductance. Such a chain could be repaired when detected by forcing 
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smaller steps near the bad states encountered. If good time bounds could be 
developed for such a scheme then one would only have to run the Markov chain 
for a time proportional to the rate bad states are actually encountered instead of 
proportional to a weak upper bound on this rate. 

4.3    Convergence acceleration. 

The linear operator interpretation of Markov chains opens the question if any of the 
many methods of convergence acceleration methods used to accelerate iterative 
linear systems can be applied to Markov chains. I do not know if this is possible 
but have thought about applying Chebyshev acceleration[35] to a Markov chain. 

The idea in Chebyshev acceleration is that if one has a process Xj+i = 
(XiP)/(\\XiP\\l) that starts with X0 and P has a unique eigenvector, IT, with 
(largest) eigenvalue 1 such that ir = lim^oo Xt. Then if one applies the operator t 
times to get the vectors X0,Xi,---Xt then Xt is not the best estimate for IT. There 
is a estimate fr = £'_0 \{Xi where the A; are explicit constants independent ofXi 
and P that is a better estimate of n than Xt is. Not all the A; are non-negative. 

The problem for Markov chains is that we realize X{ as a probability vector, so 
the subtractions needed to compute ft have no natural interpretation in this context. 
In addition the Markov chain is only able to estimate X{- so if the A; are large (and 
they are) then errors in estimating X{ soon make ft unusable.1 

4.4    Unary polynomial time in row/column sums. 

For the contingency table problem it would be nice to develop chains that ran 
in unary polynomial time in T, that total of all rows and columns. The current 
inability to do this represents a major weakness in current uniform generation 
techniques for contingency tables. A unary polynomial time algorithm to generate 
contingency tables from the uniform distribution would be useful for two simple 
reasons. First, even though T can be vary large in principle it is typically a 
number that some statistician has counted up to. In practice many contingency 
tables are constructed as summary statistics of lists of people. So even though it 

1 Chebyshev acceleration seems to improve bias at the expense of amplifying variance. In 
explicit eigenvector problems the only source of variance is rounding error- so this is a good trade. 
In random processes the variance is large to begin with. 

92 



takes no more that nra log(T) space to write down such a table it often took the 
statistician time proportional to T to generate it. Thus an algorithm that runs in 
time polynomial in T would be very useful to a statistician, though the computer 
scientist would of course like to see one that runs in time polynomial in log(T). 
In this same vein there is an obvious and efficient method to generate tables from 
the Fisher-Yates or hypergeometric distributions in time polynomial in T. The 
method is just to build a large complete bipartite graph with T left nodes and T 
right nodes. One labels each right node with an index from 1 • • • m such that r\- 
right nodes have index i. One labels each left node with an index from 1 • • • n such 
that Cj right nodes have index j. Then one chooses at random, from the uniform 
distribution, a perfect matching of the left to right nodes. The matrix X such that 
Xij is the number of right nodes marked with i that are matched up with left nodes 
marked with j is then a contingency table consistent with (r, c) and is Fisher-Yates 
distributed. It would be nice to have a comparable algorithm for the uniform case. 

4.5   Higher way contingency tables. 

Contingency tables representing relationships between more the two variables 
have been proposed. There is some freedom in defining what constraints are in 
three (and higher) way tables. If we define A;—way contingency tables to be k 
dimensional block of non-negative integers Xiui2i...tik constrained such that 

2_^^-il,h,—,ik   = CM.—|J!-l.*.«I+li—,*fc    "' 
H 

where the ctl,...,;,_,,*,,,_,.,,...,8ji are constants. Then there is no known scheme for 
approximately counting the number of constrained 3-way tables as this would be 
sufficient to approximately compute the general permanent.2 We show this by 
encoding the set of perfect matchings of an arbitrary bipartite graph in a 3-way 
table. Let G be a bipartite graph with vertex sets V\, Vi and edges set E C V\ x 14- 
We define X, a 3 way table with dimensions \V\\ x |T4| x 2, and set 

c*,i.i   =   1 

2 Sinclair and Jerrum settled the question of computing the dense permanent, the general case 
remains open. 
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c..    =  / 1   M e E 
hJ'* \ 0   otherwise 

C*,j,2      =      2^1 Chh* ~  * 
i 

Then for any X obeying these constraints we see that the set of (i, j) such that 
Xijti ^ 0 is a perfect matching of (7 and all perfect matchings of G can be so 
encoded. 

Similarly, a 4-way table has enough structure to encode a three dimensional 
matching, so the decision problem itself is NP complete. 

4.5.1    Simpson's paradox 

One might wonder if there is any actual necessity for higher way tables. Perhaps 
one could collapse the information in a 3 way table into a two way table with a com- 
parable number of cells and still perform a meaningful analysis. We present here 
an example, exploiting the well known Simpson's paradox, that should illustrate 
that this is not the case. 

Consider the 3 way table in table 4.1, which could arise from a drug trial run 
in two cities. 

City A CityB 
Drug 67 33 Drug 

Control 
550 450 

Control 590 410 50 50 
Good Bad Good Bad 

Table 4.1: Drug trial in two cities. 

This data can obviously be organized into a 3 way table indexed by treatment 
(drug/control), result (good/bad) and city (A/B). The obvious way to pair this data 
into a two dimensional table would be to add the city A data to the city B data to 
form a summary table like table 4.2. 

The problem is that there is no way to tell if important information has been 
thrown away in this summarizing step. In table 4.1 the drug has a lower rate of bad 
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effects than control in both city A and city B. However in table 4.2 we see that drug 
has a higher rate of bad effects than control over all. It is impossible to determine 
from only examining the data if summarizing table 4.1 into table 4.2 was legitimate. 
If one believes that the populations in city A and city B are identical and that the 
selection process that divide people into drug and control trials was independent 
of any properties of the city populations (like only city B got funding for a big 
drug trial) then one might want to use the summary data. If one does not believe 
that the cities have identical populations and an indifferent selection mechanism 
then one can not draw any conclusions because for all practical purposes city A 
ran only a control group and city B ran only a drug group. 
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Cities A + B 
Drug 

Control 
617 483 
640 460 

Good   Bad 

Table 4.2: Drug trial summary. 
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Appendix A 

Notation 

Notation used in this thesis. 
Br(x) 
Cr{x) 
C(u) 

hi 

QXf(x) 

T(x) 
Lin(a;i, 
T(ri,.- 

Qn 

Rn 

R"+ 

ft(r;c) 
< xi,- 

\x\ 

5 %n) 

fm) Cl j 

i •''n ^ 

The ball of radius r centered at x. 
The cube of side 2r centered at x. 
Shorthand for C\/2(x). 
KJronecker delta, 1 if i = j, 0 otherwise. 
The i'th standard unit vector, E] = Sij. 
Error function. 
Euler gamma function. 
Linearity space ofx\,--',xn. 
The set of all m by n non-negative integer matrices 
with rows sums r\, • • • rm and column sums c\, • • •, c„ 
Rational n space. 
The set of x G Q" such that x > 0. 
Euclidean n space. 
The set of x G Rn such that x > 0. 
The standard integer lattice in n space. 
The number of elements in the set X. 
Shorthand for tt(T(r;c)). 
Group generated by xi, • • •, xn. 
The number of elements in the set X or length of X 
(depending if X is a set, scalar or vector). 
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Appendix B 

Complete 3x3 solution 

The complete enumeration oracle for 3 by 3 contingency tables is used as follows. 
One starts with row sums [xh x2, £3] and column sums [x4, x5, xi+x2+x3-X4-x5] 
and arranges them (by row swaps, columns swaps and transpose) to obey all of 
the relations in table B.l (the table margins are sorted so the row/column demands 
are non-decreasing and the first row demand in no bigger than the first column 
demand). 

r 1 0 0 -1 0   ]-x < 0 

\ -1 -1 -1 1 2   ]-x < 0 

\ 0 0 0 1 -1   ]-x < 0 

\ 0 1 -1 0 0   ]-x < 0 

[ 1 -1 0 0 0   ]-x < 0 

Table B.l: Global relations for 3 by 3 contingency tables. 

Then one navigates down the decision tree, figure B.l, moving down a dashed 
arc when an inequality from table B.2 is violated and down a solid arc otherwise. 

The chamber labeled by the leaf reached then has the correct polynomial and 
the values x\, • • ■, x5 are substituted into the polynomial to get the desired count. 
A complete list of the 3 by 3 polynomials follows. 
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chamber 12 

^-^ chamberl 1 

(nl0)rel6  (nll)rel2 

chamberl 0 

chamber9 

(n9)rel2  chamber8 

(n6)rel7 - (n7)rel0 __ 

*" (n8)rel2  chamber7 

(nO)rel3 ^ 
s chamberö 

>»v chamber5 

(nl)relO  (n4)rel4 _^_ chamber4 

s s ~ *" (n5)rel5 __ 

^v chamber3 

(n2)rel5  - chamber2 

"* ^ chamberl 

(n3)rell ___ 

chamberO 

Figure B.l: Decision tree for 3 by 3 contingency tables. 
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relO [ o 0 1 -1 -1 • X < 0 
rell [ o 1 0 -1 -1 ■ X < 0 
rel2 [ o 1 0 -1 0 ■ X < 0 
rel3 [ ° 1 0 0 -1 • X < 0 
rel4 [ 1 0 1 -1 -1 • X < 0 
rel5 [ 1 1 0 -1 -1 • X < 0 
rel6 [ 1 1 0 -1 0 ■ X < 0 
rel7 [ 1 1 0 0 -1 ■ X < 0 

Table B.2: Decision tree inequalities for 3 by 3 contingency tables. 
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chamber 0: ^x\ ~x\x4 — \x\x5 +5x^x5 —\x\ +|xix4xs —Wx\ -\-\x\Xn 
+\x\x$ +X4X5 -\-\x\ +X4 +x5 +1 

chamber 1: ^x\ -\x\x4 -^1X5 -\-\x\x4x5 -^x\ +^2^4 +^2^5 -\x\x\ 
-^xjx4X5 -\x\x\ + \x2x\ +\x2x\x5 +±x2x4x| -\-\x2x\ -^x\ -\x\xs -\x\x\ 
-lx4xl ~^x\ ~WX +IX1X4X5 + \x\ -\x\x4 -\x2

2X5 + \x2x\ + ^X2X4X5 + |x2X^ 
-±x\ -|x^X5 -|x4x| -\x\ ~^x\ +gXiX4 +|xix5 -\\x\ +j|x2X4 -\-\^x2x$ 

■%x\ + ^x4x5 -{\x\ +|xi +Jx2 +|x4 +|x5 +1 

chamber 2: -j^A -\x\x2 +£x^x4 -\-\x\xs -\x\x\ -\-\x\x2X4 +ix^x2x5 —\x\x\ 
-\x\x\ -\x\ -\x\x2 + fx?x4 +|x^x5 -\x\x\ +|xix2x4 +|xix2x5 -\x\x\ 
-|xiX^ -^Xj +j^XiX2 +|fxix4 + j§XiX5 -\X\ +X2X4 +x2x5 -\x\ -\x\ +Xi 
+ |x2 + jX4 +5X5 +1 

chamber3: ^x\ -gXiX4 -\x\x5 +ixjX4x5 -^x\ +|x^x4 +^2X5 —\x\x\ 
-|x|x4X5 -\x\x\ + ^X2x] +5X2X^X5 + ±X2X4xf +\x2X3

5 ~hx\ + \x\x4 +7X^X5 
-\x\x\ -ix^X4X5 -\x\x\ +|x3x| +5X3X4X5 +ix3X4X^ +gX3X^ ~YiX\ -3X^X5 

— 5X4X5 —jX4X5     "yixi     %x\   '2X\XAXS ~T~4
X

2     4X^X4     4X2X5 +4X2X4 -r2;£2;£4'E5 
+ |x2xf +\x3

3 -jxjx4 -§xfx5 +|x3x| +|x3x4x5 +|x3xf -\x\ -|x|x5 -|x4xf 
*~3 -\\x\ +|xix4 +|xix5 -\\x\ + ^x2x4 +I5X2X5 -\\x\ +j|x3x4 +{|X3X5 — kX 2^5 

-%x\ -|x4X5 -%x\ +|xi +Jx2 +Jx3 + ±X4 + ±X5 +1 

chamber 4: -^x\ -jx3^ -\-\x\x4 -\-\x\x$ -\x\x\ -\-\x\x2X4 +±XiX2x5 —\x\x\ 

— TXJXJ —24*^3 '6^3*^^ +g-^3^5 4^'3^'4 2X3X^X^ 4'^3'''5 <"§X'iX'^ -r-^X'iX'^X^ 
+ |x3X4X5

l +Jx3X^ -5JX4 -\x\x5 -\x\x\ -\X4X\ ~YAA -\x\ -\X\X2 +1^4 
+ |xfx5 -\x\x\ +|xix2x4 +|xix2x5 -\x\x\ -fxix^ +\x\ -|xfx4 -|xfx5 

+ |X3x| + §X3X4X5 +|x3X^ -\x\ -|x^X5 -\X4X2
5 -\x\ —^x\ +^XiX2 +12^1^4 

+||xix5 -\x\ +x2x4 +x2x5 -\\x\ +|ix3x4 +{2
Lx3x5 — ü^4 ~%xAxs -\l

x\ +xi 
+±x2 +Jx3 +±x4 +|x5 +1 

chamber 5: -£xf -\x\x2 -\x\x3 -\-\x\x4 +5X1X5 —\x\x\ +\x\x2X4 +ixiX2x5 
ITT IT IT IT? IT ITT 1     l 3T "?9 -\x\x\ +jxfx3x4 +jxfx3x5 -\x\x\ -^xfx4x5 -^xfxj -\x\ -\x\x2 -fxfx3 

+ |xjX4 +|x^x5 -\x\x\ +|xix2x4 +|xix2x5 -|xix^ +|xix3x4 +|xix3x5 

-\x\x\ -|xix4x5 -|xix| -j^x^ +^xix2 +-pxix3 +xix4 +X1X5 -\x\ +X2X4 

+X2X5 — \x\ +x3x4 +x3x5 —X4 —x4x5 — x\ +4X1 +|x2 -\-\xj, +1 

chamber 6: -^Xi -|xiX2 +^x]x4 +|xiX5 -\x\x\ -\-\x\x2X4 +ixfx2x5 -\x\x\ 
-\x\x\ -^Xix| +ixiX^X5  -\x\X2x\ +^XiX^  -^«2 +^2^5  ~\x\x\ +|x2X^ 
-hA -\x\ -\x\x2 -\-\x\x4 +|xiX5 -\x\x\ +|xix2x4 +|xix2x5 -\x\x\ 
-\x\x\ -\x\ +|x^X5 -\x2x\ +\x3

5 -^x] +TXIX2 +{|XIX4 +J5X1X5 ~Y4X\ 
+X2X4 +{^X2X5 -5X4 -\\x\ +Xi +|x2 +^X4 +4X5 +1 
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chamber 7: -^x\ -|x^x2 +\x\x4 +\X\XS —\X\X\ -\-\X\X2XA -\-\X\X2XS -\X\X\ 

-\x\x\ -\x\x\ +\x\x\xi + 5X1X3X5 -\x\x2x\ -\x\x2x\ -\-\x\x\ +-(X\x\ 

— 12X2 + 5X2X4 "Tg^2a;5 4X2X4 ~\X2X5 + 5X2X4 + 5X2X5 24^4 24^5 2
xl 

-\x2X2 + fxfx4 + 5X^X5 -\x\x\ + §XlX2X4 +lxiX2X5 -fxiX^ -fx^ -^x\ 
+ 5X^X4 +1^5 -\x2x\ -jX2x\ + \x\ + 5X5" —^x\ + ^X\X2 + {5X1X4 + {5X1X5 

~12X2 +UX2X* +iX2X5 ~\\Xl -{A
X

1 +X1 +X2 + 5X4 + \x5 +1 

chamber 8: -75X1 -\x\x2 +\x\xt, +\x\x$ -\x\x\ +\x\x2Xi, +5X1X2X5 -\x\x\ 
-\x\x\ -\x\x\ +\x\x\x$ -\xxx2x

2
5 +\x!xl -±x\ -\-\x\xs -\x\x\ +zx2x] 

-hA +\x\xa, \\x\x^ -\x\x\ -5X3X4X5 -5X3X5 -\-\xsx\ + 5X3X4^X5 + \x3X4X2
5 

+ U3x] -±x\ -\x\x5 -\x\x\ -\xAx\ -±x\ -\x\ -\x\x2 +\x\xA + fx?x5 

-\x\x\ +|xix2x4 +§xix2x5 -\xxx\ -\x\x\ -\x\ +\x\x5 -\x2x\ +Jx| 
-733X4 -53:3X5 +|3;3X4 +|x3x4X5 + 5X3X5- -\x\ -\x\xs -\x4x\ -^x\ 
+ 7X1X2 +{f Xi£4 +||a;ia:s -fe +x2x4 + {5X2X5 -55X3 +75X3X4 +^^3^5 ~^x\ 
-{5X4X5 -J5X5- +Xi +\x2 +5X3 +5X4 + 1 

chamber 9: —^_x\ -^x\x2 +\x\x4 + 6-Xi'X5 -\x\x\ + 5XJX2X4 + 5X1X2X5 -\x\x\ 
-\x\x2

5 -\x\x\ + 5X1x^x4 +\x\x\xs -)yX\x2x\ -\x\x2x\ +\x\x\ + 7X1X5" 
—kx2 +6^X4 + \x\x$ -\x\x\ -\x\x\ +TX2XJ +\x2xl -55X3* +\x\x4 +7^5 
-7X3X4 -±£3X4X5 -5X3X5 +\x3xl +^X3Xp5 +^X3X4X2

5 +|x3X^ -75X4 -5X4X5 
-7X4X5 -Jx4x5 ~hx\ -\x\ -\x\x2 +|xix4 + fxfx5 -\x\x\ +|xix2x4 

+ |xix2x5 -\x\x\ -5X1X5- -\x\ +5x^x4 +\x\x5 -\x2x\ -\x2x\ -\-\x\ --.x\x4 

-7X3X5 +|x3x| +IX3X4X5 +5X3X5 -5X4X5 -5X4X5 -J,X2 + 75X1X2 +T|X1X4 

+ |±XiX5 -J2XI + {5X2X4 + {5X2X5 -55X3 +{5X3X4 + {5X3X5 -%x\ -75X4X5 
-||xf +Xl +X2 +5X3 +1 

chamber 10: -55X1 -\x\x2 +\x\x4 +2X1X2X4 -5X7X4 -\x\ +5X1X4 +|xix2x4 

-\x\x\ +2^X1 +\x\x2 + {5X1X4 +x2x4 -\x\ +5X1 +X2 +5X4 +1 

chamber 11: -^x\   -\x\x2  +5X1X4   -\-\x\x2x4   -\x\x2   -\x\x\  +5X1X2X4 
-}jX\X2x\ + \xXx\ ~YA

X
2 + \X2X4 -\x\x\ + \x2x\ -54X4* -\x\ +5X1X4 

+ 5X1X2X4 -\x\x\ -\x\ +5X^X4 -\x2x\ +\x\ +55X1 +5X1X2 +{5X1X4 +55X2 

+{5X2X4 ~YAX\ +|xi +|x2 +5X4 +1 

chamber 12: \x\x\ +|xfx2 +\x\x\ +\x\ +5X1X2 -\-\x\ +5X1 +|x2 +1 
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